2,957 research outputs found

    An acoustic multi-touch sensing method using amplitude disturbed ultrasonic wave diffraction patterns

    Get PDF
    This paper proposes an acoustic multi-touch tactile sensing method. The proposed method is based on an amplitude disturbed ultrasonic wave diffraction pattern. An A0 Lamb wave transmitted in a thin finite copper plate is processed to provide tactile information, for one or two fingers. A touch event is localized by identifying the diffraction signals among a database of diffracted Lamb wave references. Statistic models are used to improve the localization reliability. An artificial silicone finger is used in the calibration procedure. This touch interface is evaluated as a 2-touch interface

    Gsi demo: Multiuser gesture/speech interaction over digital tables by wrapping single user applications

    Get PDF
    Most commercial software applications are designed for a single user using a keyboard/mouse over an upright monitor. Our interest is exploiting these systems so they work over a digital table. Mirroring what people do when working over traditional tables, we want to allow multiple people to interact naturally with the tabletop application and with each other via rich speech and hand gesture and speech interaction on a digital table for geospatial applications- Google Earth, Warcraft III and The Sims. In this paper, we describe our underlying architecture: GSI Demo. First, GSI Demo creates a run-time wrapper around existing single user applications: it accepts and translates speech and gestures from multiple people into a single stream of keyboard and mouse inputs recognized by the application. Second, it lets people use multimodal demonstration- instead of programming- to quickly map their own speech and gestures to these keyboard/mouse inputs. For example, continuous gestures are trained by saying ¨Computer, when I do (one finger gesture), you do (mouse drag) ¨. Similarly, discrete speech commands can be trained by saying ¨Computer, when I say (layer bars), you do (keyboard and mouse macro) ¨. The end result is that end users can rapidly transform single user commercial applications into a multi-user, multimodal digital tabletop system

    Effective Natural Language Interfaces for Data Visualization Tools

    Get PDF
    How many Covid cases and deaths are there in my hometown? How much money was invested into renewable energy projects across states in the last 5 years? How large was the biggest investment in solar energy projects in the previous year? These questions and others are of interest to users and can often be answered by data visualization tools (e.g., COVID-19 dashboards) provided by governmental organizations or other institutions. However, while users in organizations or private life with limited expertise with data visualization tools (hereafter referred to as end users) are also interested in these topics, they do not necessarily have knowledge of how to use these data visualization tools effectively to answer these questions. This challenge is highlighted by previous research that provided evidence suggesting that while business analysts and other experts can effectively use these data visualization tools, end users with limited expertise with data visualization tools are still impeded in their interactions. One approach to tackle this problem is natural language interfaces (NLIs) that provide end users with a more intuitive way of interacting with these data visualization tools. End users would be enabled to interact with the data visualization tool both by utilizing the graphical user interface (GUI) elements and by just typing or speaking a natural language (NL) input to the data visualization tool. While NLIs for data visualization tools have been regarded as a promising approach to improving the interaction, two design challenges still remain. First, existing NLIs for data visualization tools still target users who are familiar with the technology, such as business analysts. Consequently, the unique design required by end users that address their specific characteristics and that would enable the effective use of data visualization tools by them is not included in existing NLIs for data visualization tools. Second, developers of NLIs for data visualization tools are not able to foresee all NL inputs and tasks that end users want to perform with these NLIs for data visualization tools. Consequently, errors still occur in current NLIs for data visualization tools. End users need to be therefore enabled to continuously improve and personalize the NLI themselves by addressing these errors. However, only limited work exists that focus on enabling end users in teaching NLIs for data visualization tools how to correctly respond to new NL inputs. This thesis addresses these design challenges and provides insights into the related research questions. Furthermore, this thesis contributes prescriptive knowledge on how to design effective NLIs for data visualization tools. Specifically, this thesis provides insights into how data visualization tools can be extended through NLIs to improve their effective use by end users and how to enable end users to effectively teach NLIs how to respond to new NL inputs. Furthermore, this thesis provides high-level guidance that developers and providers of data visualization tools can utilize as a blueprint for developing data visualization tools with NLIs for end users and outlines future research opportunities that are of interest in supporting end users to effectively use data visualization tools

    Multi-Moji: Combining Thermal, Vibrotactile and Visual Stimuli to Expand the Affective Range of Feedback

    Get PDF
    This paper explores the combination of multiple concurrent modalities for conveying emotional information in HCI: temperature, vibration and abstract visual displays. Each modality has been studied individually, but can only convey a limited range of emotions within two-dimensional valencearousal space. This paper is the first to systematically combine multiple modalities to expand the available affective range. Three studies were conducted: Study 1 measured the emotionality of vibrotactile feedback by itself; Study 2 measured the perceived emotional content of three bimodal combinations: vibrotactile + thermal, vibrotactile + visual and visual + thermal. Study 3 then combined all three modalities. Results show that combining modalities increases the available range of emotional states, particularly in the problematic top-right and bottom-left quadrants of the dimensional model. We also provide a novel lookup resource for designers to identify stimuli to convey a range of emotions

    On intelligible multimodal visual analysis

    Get PDF
    Analyzing data becomes an important skill in a more and more digital world. Yet, many users are facing knowledge barriers preventing them to independently conduct their data analysis. To tear down some of these barriers, multimodal interaction for visual analysis has been proposed. Multimodal interaction through speech and touch enables not only experts, but also novice users to effortlessly interact with such kind of technology. However, current approaches do not take the user differences into account. In fact, whether visual analysis is intelligible ultimately depends on the user. In order to close this research gap, this dissertation explores how multimodal visual analysis can be personalized. To do so, it takes a holistic view. First, an intelligible task space of visual analysis tasks is defined by considering personalization potentials. This task space provides an initial basis for understanding how effective personalization in visual analysis can be approached. Second, empirical analyses on speech commands in visual analysis as well as used visualizations from scientific publications further reveal patterns and structures. These behavior-indicated findings help to better understand expectations towards multimodal visual analysis. Third, a technical prototype is designed considering the previous findings. Enriching the visual analysis by a persistent dialogue and a transparency of the underlying computations, conducted user studies show not only advantages, but address the relevance of considering the user’s characteristics. Finally, both communications channels – visualizations and dialogue – are personalized. Leveraging linguistic theory and reinforcement learning, the results highlight a positive effect of adjusting to the user. Especially when the user’s knowledge is exceeded, personalizations helps to improve the user experience. Overall, this dissertations confirms not only the importance of considering the user’s characteristics in multimodal visual analysis, but also provides insights on how an intelligible analysis can be achieved. By understanding the use of input modalities, a system can focus only on the user’s needs. By understanding preferences on the output modalities, the system can better adapt to the user. Combining both directions imporves user experience and contributes towards an intelligible multimodal visual analysis

    Chatbot-Based Natural Language Interfaces for Data Visualisation: A Scoping Review

    Full text link
    Rapid growth in the generation of data from various sources has made data visualisation a valuable tool for analysing data. However, visual analysis can be a challenging task, not only due to intricate dashboards but also when dealing with complex and multidimensional data. In this context, advances in Natural Language Processing technologies have led to the development of Visualisation-oriented Natural Language Interfaces (V-NLIs). In this paper, we carry out a scoping review that analyses synergies between the fields of Data Visualisation and Natural Language Interaction. Specifically, we focus on chatbot-based V-NLI approaches and explore and discuss three research questions. The first two research questions focus on studying how chatbot-based V-NLIs contribute to interactions with the Data and Visual Spaces of the visualisation pipeline, while the third seeks to know how chatbot-based V-NLIs enhance users' interaction with visualisations. Our findings show that the works in the literature put a strong focus on exploring tabular data with basic visualisations, with visual mapping primarily reliant on fixed layouts. Moreover, V-NLIs provide users with restricted guidance strategies, and few of them support high-level and follow-up queries. We identify challenges and possible research opportunities for the V-NLI community such as supporting high-level queries with complex data, integrating V-NLIs with more advanced systems such as Augmented Reality (AR) or Virtual Reality (VR), particularly for advanced visualisations, expanding guidance strategies beyond current limitations, adopting intelligent visual mapping techniques, and incorporating more sophisticated interaction methods

    Guidelines for digital storytelling for Arab children

    Get PDF
    Children are getting more exposed to various technologies in teaching-learning. Various types of teaching-learning have been designed, including interactive digital storytelling. In Malaysia, local children have been clear about story-based learning materials. However, the situation is a little bit different with Arab children. Because the number of Arab children migrating into Malaysia is increasing, for following their parents who are studying at higher levels, they have to also make themselves familiar with the local scenario. In accordance, this study is initiates, to identify their acceptance towards story-based learning materials, or specifically interactive digital storytelling. Hence, this study reacts proactively, by approaching Arab children asking for their feedback on whether they have any desire for interactive digital storytelling. Through a series of interviews, this study found that they have a strong desire and tendency. Then, the following objectives have been stated: (1) to determine the components for the interactive digital storytelling for Arab children, (2) to design and develop a prototype of the interactive digital storytelling, and (3) to observe on how the Arab children experience the interactive digital storytelling. User-centered design (UCD) approach has been gone through in ensuring that the objectives are achieved. The process of determining the components for the interactive digital storytelling was carried out by directly involving Arab children and their teachers from three preschools in Changlun and Sintok. It was similar with the efforts in determining the contents, and interface design until the prototype development. Having the prototype ready, user testing was carried out to explore the way Arab children experience the prototype. All the processes involved various techniques through observation, interviews, and noting. Specifically, the user testing involved qualitative and empirical data. Qualitative data were gathered through observation, meanwhile the empirical data were gathered using Computer System Usability Questionnaire (CSUQ) tool. In the end, having data processed, the findings show that Arab children are highly satisfied with the prototype. Scientifically, the developed prototype is a mirror of the obtained guidelines, obtained through the UCD seminars. Hence, the positive acceptance on the prototype reflects positive acceptance on the guidelines, as the main contribution of this study. Besides the guidelines as the main contribution of this study, the developed prototype is also a wonderful contribution to the Arab children and their teacher. They will be using it as part of their teaching and learning material

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    An acoustic multi-touch sensing method using amplitude disturbed ultrasonic wave diffraction patterns

    Get PDF
    This paper proposes an acoustic multi-touch tactile sensing method. The proposed method is based on an amplitude disturbed ultrasonic wave diffraction pattern. An A0 Lamb wave transmitted in a thin finite copper plate is processed to provide tactile information, for one or two fingers. A touch event is localized by identifying the diffraction signals among a database of diffracted Lamb wave references. Statistic models are used to improve the localization reliability. An artificial silicone finger is used in the calibration procedure. This touch interface is evaluated as a 2-touch interface.International audienceThis paper proposes an acoustic multi-touch tactile sensing method. The proposed method is based on an amplitude disturbed ultrasonic wave diffraction pattern. An A0 Lamb wave transmitted in a thin finite copper plate is processed to provide tactile information, for one or two fingers. A touch event is localized by identifying the diffraction signals among a database of diffracted Lamb wave references. Statistic models are used to improve the localization reliability. An artificial silicone finger is used in the calibration procedure. This touch interface is evaluated as a 2-touch interface
    • …
    corecore