29,106 research outputs found

    A Geometric Formulation of Quantum Stress Fields

    Full text link
    We present a derivation of the stress field for an interacting quantum system within the framework of local density functional theory. The formulation is geometric in nature and exploits the relationship between the strain tensor field and Riemannian metric tensor field. Within this formulation, we demonstrate that the stress field is unique up to a single ambiguous parameter. The ambiguity is due to the non-unique dependence of the kinetic energy on the metric tensor. To illustrate this formalism, we compute the pressure field for two phases of solid molecular hydrogen. Furthermore, we demonstrate that qualitative results obtained by interpreting the hydrogen pressure field are not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper supersedes cond-mat/000627

    Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

    Get PDF
    One of the most essential processes within the software project life cycle is the REP (Requirements Engineering Process) because it allows specifying the software product requirements. This specification should be as consistent as possible because it allows estimating in a suitable manner the effort required to obtain the final product. REP is complex in itself, but this complexity is greatly increased in big, distributed and heterogeneous projects with multiple analyst teams and high integration between functional modules. This paper presents an approach for the systematic conciliation of functional requirements in big projects dealing with a web model-based approach and how this approach may be implemented in the context of the NDT (Navigational Development Techniques): a web methodology. This paper also describes the empirical evaluation in the CALIPSOneo project by analyzing the improvements obtained with our approach.Ministerio de EconomĂ­a y Competitividad TIN2013-46928-C3-3-RMinisterio de EconomĂ­a y Competitividad TIN2015-71938-RED

    Hacking an Ambiguity Detection Tool to Extract Variation Points: an Experience Report

    Get PDF
    Natural language (NL) requirements documents can be a precious source to identify variability information. This information can be later used to define feature models from which different systems can be instantiated. In this paper, we are interested in validating the approach we have recently proposed to extract variability issues from the ambiguity defects found in NL requirement documents. To this end, we single out ambiguities using an available NL analysis tool, QuARS, and we classify the ambiguities returned by the tool by distinguishing among false positives, real ambiguities, and variation points. We consider three medium sized requirement documents from different domains, namely, train control, social web, home automation. We report in this paper the results of the assessment. Although the validation set is not so large, the results obtained are quite uniform and permit to draw some interesting conclusions. Starting from the results obtained, we can foresee the tailoring of a NL analysis tool for extracting variability from NL requirement documents

    Development of an in-field tree imaging system : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology at Massey University

    Get PDF
    Quality inventory information is essential for optimal resource utilisation in the forestry industry. In-field tree imaging is a method which has been proposed to improve the preharvest inventor assessment of standing trees. It involves the application of digital imaging technology to this task. The method described generates a three dimensional model of each tree through the capture of two orthogonal images from ground level. The images are captured and analysed using the "TreeScan" in-field tree imaging system. This thesis describes the design, development, and evaluation of the TreeScan system. The thesis can also be used as a technical reference for the system and as such contains appropriate technical and design detail. The TreeScan system consists of a portable computer, a custom designed high resolution scanner with integral microcontroller, a calibration rod, and custom designed processing software. Images of trees are captured using the scanner which contains a CCD line scan camera and a precision scanning mechanism. Captured images are analysed on the portable computer using customised image processing software to estimate real world tree dimensions and shape. The TreeScan system provides quantitative estimates of five tree parameters; height, sweep, stem diameter, branch diameter, and feature separation such as internodal distance. In addition to these estimates a three dimensional model is generated which can be further processed to determine the optimal stem breakdown into logs

    Four-dimensional Quantum Gravity with a Cosmological Constant from Three-dimensional Holomorphic Blocks

    Full text link
    Prominent approaches to quantum gravity struggle when it comes to incorporating a positive cosmological constant in their models. Using quantization of a complex SL(2,C)\mathrm{SL}(2,\mathbb{C}) Chern-Simons theory we include a cosmological constant, of either sign, into a model of quantum gravity.Comment: 5 pages and 2 figure

    Recent progress in first-principles studies of magnetoelectric multiferroics

    Full text link
    Materials that combine magnetic and ferroelectric properties have generated increasing interest over the last few years, due to both their diverse properties and their potential utility in new types of magnetoelectric device applications. In this review we discuss recent progress in the study of such magnetoelectric multiferroics which has been achieved using computational first-principles methods based on density functional theory. In particular, we show how first-principles methods have been successfully used to explain various properties of multiferroic materials and to predict novel effects and new systems that exhibit multiferroic properties.Comment: 25 pages, 4 figures, to appear in a special issue of "Current Opinion in Solid State and Materials science" on "Theory and Modeling of Ferroelectric Materials

    Static isolated horizons: SU(2) invariant phase space, quantization, and black hole entropy

    Get PDF
    We study the classical field theoretical formulation of static generic isolated horizons in a manifestly SU(2) invariant formulation. We show that the usual classical description requires revision in the non-static case due to the breaking of diffeomorphism invariance at the horizon leading to the non conservation of the usual pre-symplectic structure. We argue how this difficulty could be avoided by a simple enlargement of the field content at the horizon that restores diffeomorphism invariance. Restricting our attention to static isolated horizons we study the effective theories describing the boundary degrees of freedom. A quantization of the horizon degrees of freedom is proposed. By defining a statistical mechanical ensemble where only the area A of the horizon is fixed macroscopically-states with fluctuations away from spherical symmetry are allowed-we show that it is possible to obtain agreement with the Hawking's area law---S = A/4 (in Planck Units)---without fixing the Immirzi parameter to any particular value: consistency with the area law only imposes a relationship between the Immirzi parameter and the level of the Chern-Simons theory involved in the effective description of the horizon degrees of freedom.Comment: Presentation improvements, published versio

    Global anomalies in M-theory

    Get PDF
    We first consider M-theory formulated on an open eleven-dimensional spin-manifold. There is then a potential anomaly under gauge transformations on the E_8 bundle that is defined over the boundary and also under diffeomorphisms of the boundary. We then consider M-theory configurations that include a five-brane. In this case, diffeomorphisms of the eleven-manifold induce diffeomorphisms of the five-brane world-volume and gauge transformations on its normal bundle. These transformations are also potentially anomalous. In both of these cases, it has previously been shown that the perturbative anomalies, i.e. the anomalies under transformations that can be continuously connected to the identity, cancel. We extend this analysis to global anomalies, i.e. anomalies under transformations in other components of the group of gauge transformations and diffeomorphisms. These anomalies are given by certain topological invariants, that we explicitly construct.Comment: 14 pages, harvma
    • …
    corecore