42 research outputs found

    Space-Time Transmit-Receive Design for Colocated MIMO Radar

    Get PDF
    This chapter deals with the design of multiple input multiple-output (MIMO) radar space-time transmit code (STTC) and space-time receive filter (STRF) to enhance moving targets detection in the presence of signal-dependent interferences, where we assume that some knowledge of target and clutter statistics are available for MIMO radar system according to a cognitive paradigm by using a site-specific (possible dynamic) environment database. Thus, an iterative sequential optimization algorithm with ensuring the convergence is proposed to maximize the signal to interference plus noise ratio (SINR) under the similarity and constant modulus constraints on the probing waveform. In particular, each iteration of the proposed algorithm requires to solve the hidden convex problems. The computational complexity is linear with the number of iterations and polynomial with the sizes of the STTW and the STRF. Finally, the gain and the computation time of the proposed algorithm also compared with the available methods are evaluated

    Multidimensional Frequency Estimation with Applications in Automotive Radar

    Get PDF
    This thesis considers multidimensional frequency estimation with a focus on computational efficiency and high-resolution capability. A novel framework on multidimensional high-resolution frequency estimation is developed and applied to increase the range, radial velocity, and angular resolution capcability of state-of-the-art automotive radars

    An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing

    Get PDF
    Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, by sharing the majority of hardware, signal processing modules and, in a typical case, the transmitted signal. The close cooperation of the communication and sensing functions can enable significant improvement of spectrum efficiency, reduction of device size, cost and power consumption, and improvement of performance of both functions. Advanced signal processing techniques are critical for making the integration efficient, from transmission signal design to receiver processing. This paper provides a comprehensive overview of the state-of-the-art on JCR systems from the signal processing perspective. A balanced coverage on both transmitter and receiver is provided for three types of JCR systems, namely, communication-centric, radar-centric, and joint design and optimization
    corecore