56,414 research outputs found

    Dynamic knowledge model evolution in SWoT: a way to improve services selection relevancy over time

    Get PDF
    Semantic web technologies are gaining momentum in the WoT (Web of Things) community for its promising ability to manage the increasing semantic heterogeneity between devices (Semantic Web of Things, SWoT) in ambient environments. However, most of the approaches rely on ad-hoc and static knowledge models (ontologies) designed for specific domains and applications. While it is a solution for handling the semantic heterogeneity issue, it offers no perspective in term of ontology evolution over time. We study in this paper several approaches allowing: (1) to handle the semantic heterogeneity issue; (2) to capitalize the knowledge contributions throughout the life of the system allowing it to potentially better assist people in their environment over time. One of the approaches is validated on two real use-cases

    Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey

    Get PDF
    The integration of things’ data on the Web and Web linking for things’ description and discovery is leading the way towards smart Cyber–Physical Systems (CPS). The data generated in CPS represents observations gathered by sensor devices about the ambient environment that can be manipulated by computational processes of the cyber world. Alongside this, the growing use of social networks offers near real-time citizen sensing capabilities as a complementary information source. The resulting Cyber–Physical–Social System (CPSS) can help to understand the real world and provide proactive services to users. The nature of CPSS data brings new requirements and challenges to different stages of data manipulation, including identification of data sources, processing and fusion of different types and scales of data. To gain an understanding of the existing methods and techniques which can be useful for a data-oriented CPSS implementation, this paper presents a survey of the existing research and commercial solutions. We define a conceptual framework for a data-oriented CPSS and detail the various solutions for building human–machine intelligence

    On participatory service provision at the network edge with community home gateways

    Get PDF
    Edge computing is considered as a technology to enable new types of services which operate at the network edge. There are important use cases in ambient intelligence and the Internet of Things (IoT) for edge computing driven by huge business potentials. Most of today's edge computing platforms, however, consist of proprietary gateways, which are either closed or fairly restricted to deploy any third-party services. In this paper we discuss a participatory edge computing system running on home gateways to serve as an open environment to deploy local services. We present first motivating use cases and review existing approaches and design considerations for the proposed system. Then we show our platform which materializes the principles of an open and participatory edge environment, to lower the entry barriers for service deployment at the network edge. By using containers, our platform can flexibly enable third-party services, and may serve as an infrastructure to support several application domains of ambient intelligence.Peer ReviewedPostprint (author's final draft

    Situational-Context: A Unified View of Everything Involved at a Particular Situation

    Get PDF
    As the interest in the Web of Things increases, specially for the general population, the barriers to entry for the use of these technologies should decrease. Current applications can be developed to adapt their behaviour to predefined conditions and users preferences, facilitating their use. In the future,Web of Things software should be able to automatically adjust its behaviour to non-predefined preferences or context of its users. In this vision paper we define the Situational-Context as the combination of the virtual profiles of the entities (things or people) that concur at a particular place and time. The computation of the Situational-Context allow us to predict the expected system behaviour and the required interaction between devices to meet the entities’ goals, achieving a better adjustment of the system to variable contexts.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Making Public Media Personal: Nostalgia and Reminiscence in the Office

    No full text
    In this paper we explore the notion of creating personally evocative collections of content from publicly available material. Compared to the personal media that we look at, reminisce over, or personalise our offices with, public media offers the potential for a different type of nostalgia, signifiers of an era such as entertainment, products, or fashions. We focus on an office environment, where the use of filtered public media may mitigate concerns over protecting privacy and disclosing too much of one's identity, while keeping the existing benefits of office personalisation in terms of reminiscence, improving mood, and developing identity. After preliminary explorations of content and form, we developed a two-screen ambient display that cycled through 500 images automatically retrieved based on four simple user questions. We ran a two-week trial of the display with six users. We present qualitative results of the trial from which we see that it is possible to bring the delight associated with personal content into the workplace, while being mindful of issues of appropriateness and privacy. Images of locations from childhood were particularly evocative for all participants, while simple objects such as stickers, music, or boardgames were more varied across participants. We discuss a number of avenues for future work in the workplace and beyond: improving the chance of an evocative moment, capturing the mundane, and the crowdsourcing of nostalgia

    Internet of things for medication control: e-health architecture and service implementation

    Get PDF
    The use of Radio Frequency Identification technology (RFID) in medical context enables drug identification but also a rapid and, of course, precise identification of patients, physicians, nurses or any other health caregiver. Combining RFID tag identification with structured and secure Internet of Things (IoT) solutions, one can establish a ubiquitous and quick access to any type of medical related records, as long as one can control and adequately secure all the Internet mediated interactions. This paper presents an e-Health service architecture, along with the corresponding Internet of Things prototype implementation, that makes use of RFID tags and Electronic Product Codes (EPC) standards, in order to easily establish in a ubiquitous manner a medication control system. The system, presented and tested, has a web interface and allowed for a first evaluation of the e-health proposed service. As the service is mainly focused on elderly Ambient Assisted Living (AAL) solutions, all these technologies - RFID, EPC, Object Naming Service (ONS) and IoT – have been integrated into a suitable system, able to promote better patient/physician, patient/nurse and, generally, any patient/health caregiver, interactions. The whole prototype service, entitled "RFID-based IoT for Medication Control", and its web interface are presented and evaluated.FEDER Funds through the Programa Operacional Fatores de Competitividade – COMPETE and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-02267

    ITERL: A Wireless Adaptive System for Efficient Road Lighting

    Get PDF
    This work presents the development and construction of an adaptive street lighting system that improves safety at intersections, which is the result of applying low-power Internet of Things (IoT) techniques to intelligent transportation systems. A set of wireless sensor nodes using the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard with additional internet protocol (IP) connectivity measures both ambient conditions and vehicle transit. These measurements are sent to a coordinator node that collects and passes them to a local controller, which then makes decisions leading to the streetlight being turned on and its illumination level controlled. Streetlights are autonomous, powered by photovoltaic energy, and wirelessly connected, achieving a high degree of energy efficiency. Relevant data are also sent to the highway conservation center, allowing it to maintain up-to-date information for the system, enabling preventive maintenance.ConsejerĂ­a de Fomento y Vivienda Junta de AndalucĂ­a G-GI3002 / IDIOFondo Europeo de Desarrollo Regional G-GI3002 / IDI
    • …
    corecore