134 research outputs found

    7th SC@RUG 2010 proceedings:Student Colloquium 2009-2010

    Get PDF

    7th SC@RUG 2010 proceedings:Student Colloquium 2009-2010

    Get PDF

    7th SC@RUG 2010 proceedings:Student Colloquium 2009-2010

    Get PDF

    7th SC@RUG 2010 proceedings:Student Colloquium 2009-2010

    Get PDF

    7th SC@RUG 2010 proceedings:Student Colloquium 2009-2010

    Get PDF

    7th SC@RUG 2010 proceedings:Student Colloquium 2009-2010

    Get PDF

    Vicinity Occlusion Maps: Enhanced Depth Perception of Volumetric Models

    Get PDF
    Volume models often show high depth complexity. This poses di±culties to the observer in judging the spatial relationships accurately. Illustrators usually use certain techniques such as halos or edge darkening in order to enhance depth perception of certain structures. Halos may be dark or light, and even colored. Halo construction on a volumetric basis impacts rendering performance due to the complexity of the construction process. In this paper we present Vicinity Occlusion Maps: a simple and fast method to compute the light occlusion due to neighboring voxels. Vicinity Occlusion Maps may be used to generate flexible halos around objects or selected structures in order to enhance depth perception or accentuate the presence of some structures in volumetric models at a low cost. The user may freely select the structure that requires the halos to be generated, its color and size, and our proposed application generates those in real time. They may also be used to perform vicinity shading in realtime, or even to combine both effects.Peer ReviewedPostprint (author’s final draft

    Instant visualization of secondary structures of molecular models

    Get PDF
    Molecular Dynamics simulations are of key importance in the drug design field. Among all possible representations commonly used to inspect these simulations, Ribbons has the advantage of giving the expert a good overview of the conformation of the molecule. Although several techniques have been previously proposed to render ribbons, all of them have limitations in terms of space or calculation time, making them not suitable for real-time interaction with simulation software. In this paper we present a novel adaptive method that generates ribbons in real-time, taking advantage of the tessellation shader. The result is a fast method that requires no precomputation, and that generates high quality shapes and shading.This work has been supported by the projects TIN2013-47137-C2-1-P and TIN2014-52211-C2-1-R of the Spanish Ministerio de Economía y Competitividad, and the project 2014-SGR 146 from the Catalan Government.Postprint (author's final draft

    Fast occlusion sweeping

    Get PDF
    Abstract. While realistic illumination significantly improves the visual quality and perception of rendered images, it is often very expensive to compute. In this paper, we propose a new algorithm for embedding a global ambient occlusion computation within the fast sweeping algorithm while determining isosurfaces. With this method we can approximate ambient occlusion for rendering volumetric data with minimal additional cost over fast sweeping. We compare visualizations rendered with our algorithm to visualizations computed with only local shading, and with a ambient occlusion calculation using Monte Carlo sampling method. We also show how this method can be used for approximating low frequency shadows and subsurface scattering. Realistic illumination techniques used in digitally synthesized images are known to greatly enhance the perception of shape. This is as true for renderings of volume data as it is for geometric models. For example, Qiu et al. [1] used full global illumination techniques to improve visualizations of volumetric data, and Stewart [2] shows how computation of local ambient occlusion enhances the perception of grooves in a brain CT scanned dataset. Tarini et al. In this paper, we provide a new solution for ambient occlusion computation that is significantly faster than existing techniques. The method integrates well with a volumetric ray marching algorithm implemented on the GPU. While not a full global illumination solution, ambient occlusion provides a more realistic illumination model than does local illumination, and permits the use of realistic light sources, like skylights. For accelerating our ray marching algorithm, we build a volumetric signed distance field using the fast sweeping method, and we embed our ambient occlusion approximatio

    A general illumination model for molecular visualization

    Get PDF
    Several visual representations have been developed over the years to visualize molecular structures, and to enable a better understanding of their underlying chemical processes. Today, the most frequently used atom-based representations are the Space-filling, the Solvent Excluded Surface, the Balls-and-Sticks, and the Licorice models. While each of these representations has its individual benefits, when applied to large-scale models spatial arrangements can be difficult to interpret when employing current visualization techniques. In the past it has been shown that global illumination techniques improve the perception of molecular visualizations; unfortunately existing approaches are tailored towards a single visual representation. We propose a general illumination model for molecular visualization that is valid for different representations. With our illumination model, it becomes possible, for the first time, to achieve consistent illumination among all atom-based molecular representations. The proposed model can be further evaluated in real-time, as it employs an analytical solution to simulate diffuse light interactions between objects. To be able to derive such a solution for the rather complicated and diverse visual representations, we propose the use of regression analysis together with adapted parameter sampling strategies as well as shape parametrization guided sampling, which are applied to the geometric building blocks of the targeted visual representations. We will discuss the proposed sampling strategies, the derived illumination model, and demonstrate its capabilities when visualizing several dynamic molecules.Peer ReviewedPostprint (author's final draft
    corecore