8,718 research outputs found

    Ambient Interference Effects in Wi-Fi Networks

    Full text link

    Wirelessly Powered Backscatter Communication Networks: Modeling, Coverage and Capacity

    Get PDF
    Future Internet-of-Things (IoT) will connect billions of small computing devices embedded in the environment and support their device-to-device (D2D) communication. Powering this massive number of embedded devices is a key challenge of designing IoT since batteries increase the devices' form factors and battery recharging/replacement is difficult. To tackle this challenge, we propose a novel network architecture that enables D2D communication between passive nodes by integrating wireless power transfer and backscatter communication, which is called a wirelessly powered backscatter communication (WP-BackCom) network. In the network, standalone power beacons (PBs) are deployed for wirelessly powering nodes by beaming unmodulated carrier signals to targeted nodes. Provisioned with a backscatter antenna, a node transmits data to an intended receiver by modulating and reflecting a fraction of a carrier signal. Such transmission by backscatter consumes orders-of-magnitude less power than a traditional radio. Thereby, the dense deployment of low-complexity PBs with high transmission power can power a large-scale IoT. In this paper, a WP-BackCom network is modeled as a random Poisson cluster process in the horizontal plane where PBs are Poisson distributed and active ad-hoc pairs of backscatter communication nodes with fixed separation distances form random clusters centered at PBs. The backscatter nodes can harvest energy from and backscatter carrier signals transmitted by PBs. Furthermore, the transmission power of each node depends on the distance from the associated PB. Applying stochastic geometry, the network coverage probability and transmission capacity are derived and optimized as functions of backscatter parameters, including backscatter duty cycle and reflection coefficient, as well as the PB density. The effects of the parameters on network performance are characterized.Comment: 28 pages, 11 figures, has been submitted to IEEE Trans. on Wireless Communicatio

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Screening interacting factors in a wireless network testbed using locating arrays

    Get PDF
    Wireless systems exhibit a wide range of configurable parameters (factors), each with a number of values (levels), that may influence performance. Exhaustively analyzing all factor interactions is typically not feasible in experimental systems due to the large design space. We propose a method for determining which factors play a significant role in wireless network performance with multiple performance metrics (response variables). Such screening can be used to reduce the set of factors in subsequent experimental testing, whether for modelling or optimization. Our method accounts for pairwise interactions between the factors when deciding significance, because interactions play a significant role in real-world systems. We utilize locating arrays to design the experiment because they guarantee that each pairwise interaction impacts a distinct set of tests. We formulate the analysis as a problem in compressive sensing that we solve using a variation of orthogonal matching pursuit, together with statistical methods to determine which factors are significant. We evaluate the method using data collected from the w-iLab.t Zwijnaarde wireless network testbed and construct a new experiment based on the first analysis to validate the results. We find that the analysis exhibits robustness to noise and to missing data

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99
    corecore