2,788 research outputs found

    Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    Get PDF
    This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms

    Application of an array of Metal-Oxide Semiconductor gas sensors in an assistant personal robot for early gas leak detection

    Get PDF
    This paper proposes the application of a low-cost gas sensor array in an assistant personal robot (APR) in order to extend the capabilities of the mobile robot as an early gas leak detector for safety purposes. The gas sensor array is composed of 16 low-cost metal-oxide (MOX) gas sensors, which are continuously in operation. The mobile robot was modified to keep the gas sensor array always switched on, even in the case of battery recharge. The gas sensor array provides 16 individual gas measurements and one output that is a cumulative summary of all measurements, used as an overall indicator of a gas concentration change. The results of preliminary experiments were used to train a partial least squares discriminant analysis (PLS-DA) classifier with air, ethanol, and acetone as output classes. Then, the mobile robot gas leak detection capabilities were experimentally evaluated in a public facility, by forcing the evaporation of (1) ethanol, (2) acetone, and (3) ethanol and acetone at different locations. The positive results obtained in different operation conditions over the course of one month confirmed the early detection capabilities of the proposed mobile system. For example, the APR was able to detect a gas leak produced inside a closed room from the external corridor due to small leakages under the door induced by the forced ventilation system of the building

    Design and Implementation of a Mobile Robot for Carbon Monoxide Monitoring

    Get PDF
    The gas detection problem is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. The mobile robot used for gas detection has several advantages and can reduce danger for humans. In this study, we proposed an integration system for a mobile robot that can be used for carbon monoxide (CO) monitoring with different operating temperatures. The design and implementation of a mobile robot system that proposed consists of the onboard and ground stations. The proposed system can read CO gas concentration and temperature then send it wirelessly using an XBee module to the ground station. This system was also able to receive the command from the ground station to move the robot. The system provided real-time acquisition data that believed can be a useful tool for monitoring and can be applied for various purposes. The experimental results show that a combination of a mobile robot and environmental sensors can be used for environmental monitoring

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Studies on user control in ambient intelligent systems

    Get PDF
    People have a deeply rooted need to experience control and be effective in interactions with their environments. At present times, we are surrounded by intelligent systems that take decisions and perform actions for us. This should make life easier, but there is a risk that users experience less control and reject the system. The central question in this thesis is whether we can design intelligent systems that have a degree of autonomy, while users maintain a sense of control. We try to achieve this by giving the intelligent system an 'expressive interface’: the part that provides information to the user about the internal state, intentions and actions of the system. We examine this question both in the home and the work environment.We find the notion of a ‘system personality’ useful as a guiding principle for designing interactions with intelligent systems, for domestic robots as well as in building automation. Although the desired system personality varies per application, in both domains a recognizable system personality can be designed through expressive interfaces using motion, light, sound, and social cues. The various studies show that the level of automation and the expressive interface can influence the perceived system personality, the perceived level of control, and user’s satisfaction with the system. This thesis shows the potential of the expressive interface as an instrument to help users understand what is going on inside the system and to experience control, which might be essential for the successful adoption of the intelligent systems of the future.<br/
    corecore