21,027 research outputs found

    Role of the host cell in bacteriophage T4 development. II. Characterization of host mutants that have pleiotropic effects on T4 growth

    Get PDF
    Mutant host-defective Escherichi coli that fail to propagate bacteriophage T4 and have a pleiotropic effect on T4 development have been isolated and characterized. In phage-infected mutant cells, specific early phage proteins are absent or reduced in amount, phage DNA synthesis is depressed by about 50%, specific structural phage proteins, including some tail and collar components, are deficient or missing, and host-cell lysis is delayed and slow. Almost all phage that can overcome the host block carry mutantions that map in functionally undefined 'nonessential' regions of the T4 genome, most near gene 39. The mutant host strains are temperature sensitive for growth and show simultaneous reversion of the ts phenotype and the inability to propagate T4+. The host mutations are cotransduced with ilv (83 min) and may lie in the gene for transcription termination factor rho

    A Review on the Salt Bridge Between ASP177 and ARG163 of Wild-Type Rabbit Prion Protein

    Full text link
    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer, elks, humans and mice etc., but rabbits have a low susceptibility to be infected by prion diseases with respect to other species. The stability of rabbit prion protein is due to its highly ordered {\beta}2-{\alpha}2 loop (PLoS One 5(10) e13273 (2010); Journal of Biological Chemistry 285(41) 31682-31693 (2010)) and a hydrophobic staple helix-capping motif (PNAS 107(46) 19808-19813 (2010); PLoS One 8 (5) e63047 (2013)). The {\beta}2-{\alpha}2 loop and the tail of Helix 3 it interacts with have been a focus in prion protein structure studies. For this loop we found a salt bridge linkage ASP177-ARG163 (O-N) (Journal of Theoretical Biology 342 (7 February 2014) 70-82 (2014)). Some scientists said on the 2FJ3.pdb NMR file of the rabbit prion protein, the distance of ASP177-ARG163 (O-N) gives the salt bridge of about 10 {\AA} which is nearly null in terms of energy and such a salt bridge is not observed in their work. But, from the 3O79.pdb X-ray file of the rabbit prion protein, we can clearly observe this salt bridge. This article analyses the NMR and X-ray structures and gives an answer to the above question: the salt bridge presents at pH 6.5 in the X-ray structure is simply gone at pH 4.5 in the NMR structure is simply due to the different pH values that impact electrostatics at the salt bridge and hence also impact the structures. Moreover, some molecular dynamics simulation results of the X-ray structure are reported in this article to reveal the secrets of the structural stability of rabbit prion protein.Comment: arXiv admin note: text overlap with arXiv:1407.622

    pFAR plasmids: New Eukaryotic Expression Vectors for Gene Therapy, devoid of Antibiotic Resistance Markers

    Get PDF
    Efficient production of eukaryotic expression vectors requires the selection of plasmid-containing bacteria. To avoid the risk of dissemination of antibiotic resistance markers, we developed a new system to produce a family of plasmids Free of Antibiotic Resistance genes, called pFARs. The strategy is based on the suppression of a chromosomal nonsense mutation by a plasmid-borne function. The amber mutation was introduced into the Escherichia coli thyA gene that encodes a thymidylate synthase required for dTMP synthesis, resulting in thymidine auxotrophy. In parallel, a small plasmid vector that carries an amber suppressor t-RNA gene was entirely synthesised. The introduction of pFAR plasmids into an optimised thyA mutant restored normal growth to the auxotrophic strain, and led to an efficient production of monomeric supercoiled plasmids, as required for clinical trials. Luciferase activities measured after intramuscular injection and electrotransfer of LUC-encoding pFAR vector were similar to those obtained with a commercial vector containing the same expression cassette. Interestingly, whereas luciferase activities decreased within three weeks after intradermal electrotransfer of conventional expression vectors, sustained levels were observed with the pFAR derivative. Thus, pFAR plasmids represent a novel family of biosafe eukaryotic expression vectors, suitable for gene therapy

    Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants

    Get PDF
    Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Δ1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Δ1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis

    Evaluating force field accuracy with long-time simulations of a tryptophan zipper peptide

    Full text link
    We have combined a custom implementation of the fast multiple-time-stepping LN integrator with parallel tempering to explore folding properties of small peptides in implicit solvent on the time scale of microseconds. We applied this algorithm to the synthetic {\beta}-hairpin trpzip2 and one of its sequence variants W2W9. Each simulation consisted of over 12 {\mu}s of aggregated virtual time. Several measures of folding behavior showed convergence, allowing comparison with experimental equilibrium properties. Our simulations suggest that the electrostatic interaction of tryptophan sidechains is responsible for much of the stability of the native fold. We conclude that the ff99 force field combined with ff96 {\phi} and {\psi} dihedral energies and implicit solvent can reproduce plausible folding behavior in both trpzip2 and W2W9.Comment: 10 pages, 11 figures, submitted to the Journal of Chemical Physics on June 28, 201

    Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain

    Get PDF
    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK.Fil: Rinaldi, Jimena Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Arrar, Mehrnoosh. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Sycz, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cerutti, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Plataforma Argentina de Biología Estructural y Metabolómica PLABEM; ArgentinaFil: Berguer, Paula Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Paris, Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Marti, Marcelo Adrian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Plataforma Argentina de Biología Estructural y Metabolómica PLABEM; ArgentinaFil: Goldbaum, Fernando Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Plataforma Argentina de Biología Estructural y Metabolómica PLABEM; Argentin

    Predicting Transcription Factor Specificity with All-Atom Models

    Get PDF
    The binding of a transcription factor (TF) to a DNA operator site can initiate or repress the expression of a gene. Computational prediction of sites recognized by a TF has traditionally relied upon knowledge of several cognate sites, rather than an ab initio approach. Here, we examine the possibility of using structure-based energy calculations that require no knowledge of bound sites but rather start with the structure of a protein-DNA complex. We study the PurR E. coli TF, and explore to which extent atomistic models of protein-DNA complexes can be used to distinguish between cognate and non-cognate DNA sites. Particular emphasis is placed on systematic evaluation of this approach by comparing its performance with bioinformatic methods, by testing it against random decoys and sites of homologous TFs. We also examine a set of experimental mutations in both DNA and the protein. Using our explicit estimates of energy, we show that the specificity for PurR is dominated by direct protein-DNA interactions, and weakly influenced by bending of DNA.Comment: 26 pages, 3 figure
    corecore