183 research outputs found

    The proof-theoretic strength of Ramsey's theorem for pairs and two colors

    Get PDF
    Ramsey's theorem for nn-tuples and kk-colors (RTkn\mathsf{RT}^n_k) asserts that every k-coloring of [N]n[\mathbb{N}]^n admits an infinite monochromatic subset. We study the proof-theoretic strength of Ramsey's theorem for pairs and two colors, namely, the set of its Π10\Pi^0_1 consequences, and show that RT22\mathsf{RT}^2_2 is Π30\Pi^0_3 conservative over IΣ10\mathsf{I}\Sigma^0_1. This strengthens the proof of Chong, Slaman and Yang that RT22\mathsf{RT}^2_2 does not imply IΣ20\mathsf{I}\Sigma^0_2, and shows that RT22\mathsf{RT}^2_2 is finitistically reducible, in the sense of Simpson's partial realization of Hilbert's Program. Moreover, we develop general tools to simplify the proofs of Π30\Pi^0_3-conservation theorems.Comment: 32 page

    Every countable model of set theory embeds into its own constructible universe

    Full text link
    The main theorem of this article is that every countable model of set theory M, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding j:M→LMj:M\to L^M that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random Q-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that LML^M contains a submodel that is a universal acyclic digraph of rank OrdMOrd^M. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other. Indeed, they are pre-well-ordered by embedability in order-type exactly ω1+1\omega_1+1. Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory MM is universal for all countable well-founded binary relations of rank at most OrdMOrd^M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if MM is any nonstandard model of PA, then every countable model of set theory---in particular, every model of ZFC---is isomorphic to a submodel of the hereditarily finite sets HFMHF^M of MM. Indeed, HFMHF^M is universal for all countable acyclic binary relations.Comment: 25 pages, 2 figures. Questions and commentary can be made at http://jdh.hamkins.org/every-model-embeds-into-own-constructible-universe. (v2 adds a reference and makes minor corrections) (v3 includes further changes, and removes the previous theorem 15, which was incorrect.

    The modal logic of set-theoretic potentialism and the potentialist maximality principles

    Full text link
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and L\"owe, including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism (true in all larger VβV_\beta); Grothendieck-Zermelo potentialism (true in all larger VκV_\kappa for inaccessible cardinals κ\kappa); transitive-set potentialism (true in all larger transitive sets); forcing potentialism (true in all forcing extensions); countable-transitive-model potentialism (true in all larger countable transitive models of ZFC); countable-model potentialism (true in all larger countable models of ZFC); and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, and an upper bound of S5, proving in each case that these bounds are optimal. The validity of S5 in a world is a potentialist maximality principle, an interesting set-theoretic principle of its own. The results can be viewed as providing an analysis of the modal commitments of the various set-theoretic multiverse conceptions corresponding to each potentialist account.Comment: 36 pages. Commentary can be made about this article at http://jdh.hamkins.org/set-theoretic-potentialism. Minor revisions in v2; further minor revisions in v

    Logical Dreams

    Full text link
    We discuss the past and future of set theory, axiom systems and independence results. We deal in particular with cardinal arithmetic
    • …
    corecore