2,231 research outputs found

    Altruism in Atomic Congestion Games

    Full text link
    This paper studies the effects of introducing altruistic agents into atomic congestion games. Altruistic behavior is modeled by a trade-off between selfish and social objectives. In particular, we assume agents optimize a linear combination of personal delay of a strategy and the resulting increase in social cost. Our model can be embedded in the framework of congestion games with player-specific latency functions. Stable states are the Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. Previous work shows that for symmetric singleton games with convex delays Nash equilibria are guaranteed to exist. For concave delay functions we observe that there are games without Nash equilibria and provide a polynomial time algorithm to decide existence for symmetric singleton games with arbitrary delay functions. Our algorithm can be extended to compute best and worst Nash equilibria if they exist. For more general congestion games existence becomes NP-hard to decide, even for symmetric network games with quadratic delay functions. Perhaps surprisingly, if all delay functions are linear, then there is always a Nash equilibrium in any congestion game with altruists and any better-response dynamics converges. In addition to these results for uncoordinated dynamics, we consider a scenario in which a central altruistic institution can motivate agents to act altruistically. We provide constructive and hardness results for finding the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms to incentivize agents to adopt favorable behavior.Comment: 13 pages, 1 figure, includes some minor adjustment

    Robust Price of Anarchy for Atomic Games with Altruistic Players

    Get PDF
    We study the inefficiency of equilibria for various classes of games when players are (partially) altruistic. We model altruistic behavior by assuming that player i's perceived cost is a convex combination of 1-\beta_i times his direct cost and \beta_i times the social cost. Tuning the parameters \beta_i allows smooth interpolation between purely selfish and purely altruistic behavior. Within this framework, we study altruistic extensions of linear congestion games, fair cost-sharing games and valid utility games. We derive (tight) bounds on the price of anarchy of these games for several solution concepts. Thereto, we suitably adapt the smoothness notion introduced by Roughgarden and show that it captures the essential properties to determine the robust price of anarchy of these games. Our bounds reveal that for congestion games and cost-sharing games the worst-case robust price of anarchy increases with increasing altruism, while for valid utility games it remains constant and is not affected by altruism. We also show that the increase in price of anarchy is not a universal phenomenon: for symmetric singleton linear congestion games we derive a bound on the price of anarchy for pure Nash equilibria that decreases as the level of altruism increases. Since the bound is also strictly lower than the robust price of anarchy, it exhibits a natural example in which Nash equilibria are more efficient than more permissive notions of equilibrium

    Path deviations outperform approximate stability in heterogeneous congestion games

    Get PDF
    We consider non-atomic network congestion games with heterogeneous players where the latencies of the paths are subject to some bounded deviations. This model encompasses several well-studied extensions of the classical Wardrop model which incorporate, for example, risk-aversion, altruism or travel time delays. Our main goal is to analyze the worst-case deterioration in social cost of a perturbed Nash flow (i.e., for the perturbed latencies) with respect to an original Nash flow. We show that for homogeneous players perturbed Nash flows coincide with approximate Nash flows and derive tight bounds on their inefficiency. In contrast, we show that for heterogeneous populations this equivalence does not hold. We derive tight bounds on the inefficiency of both perturbed and approximate Nash flows for arbitrary player sensitivity distributions. Intuitively, our results suggest that the negative impact of path deviations (e.g., caused by risk-averse behavior or latency perturbations) is less severe than approximate stability (e.g., caused by limited responsiveness or bounded rationality). We also obtain a tight bound on the inefficiency of perturbed Nash flows for matroid congestion games and homogeneous populations if the path deviations can be decomposed into edge deviations. In particular, this provides a tight bound on the Price of Risk-Aversion for matroid congestion games

    CSMA Local Area Networking under Dynamic Altruism

    Full text link
    In this paper, we consider medium access control of local area networks (LANs) under limited-information conditions as befits a distributed system. Rather than assuming "by rule" conformance to a protocol designed to regulate packet-flow rates (e.g., CSMA windowing), we begin with a non-cooperative game framework and build a dynamic altruism term into the net utility. The effects of altruism are analyzed at Nash equilibrium for both the ALOHA and CSMA frameworks in the quasistationary (fictitious play) regime. We consider either power or throughput based costs of networking, and the cases of identical or heterogeneous (independent) users/players. In a numerical study we consider diverse players, and we see that the effects of altruism for similar players can be beneficial in the presence of significant congestion, but excessive altruism may lead to underuse of the channel when demand is low

    Bounding the Inefficiency of Altruism Through Social Contribution Games

    Get PDF
    We introduce a new class of games, called social contribution games (SCGs), where each player's individual cost is equal to the cost he induces on society because of his presence. Our results reveal that SCGs constitute useful abstractions of altruistic games when it comes to the analysis of the robust price of anarchy. We first show that SCGs are altruism-independently smooth, i.e., the robust price of anarchy of these games remains the same under arbitrary altruistic extensions. We then devise a general reduction technique that enables us to reduce the problem of establishing smoothness for an altruistic extension of a base game to a corresponding SCG. Our reduction applies whenever the base game relates to a canonical SCG by satisfying a simple social contribution boundedness property. As it turns out, several well-known games satisfy this property and are thus amenable to our reduction technique. Examples include min-sum scheduling games, congestion games, second price auctions and valid utility games. Using our technique, we derive mostly tight bounds on the robust price of anarchy of their altruistic extensions. For the majority of the mentioned game classes, the results extend to the more differentiated friendship setting. As we show, our reduction technique covers this model if the base game satisfies three additional natural properties

    Tight Inefficiency Bounds for Perception-Parameterized Affine Congestion Games

    Get PDF
    Congestion games constitute an important class of non-cooperative games which was introduced by Rosenthal in 1973. In recent years, several extensions of these games were proposed to incorporate aspects that are not captured by the standard model. Examples of such extensions include the incorporation of risk sensitive players, the modeling of altruistic player behavior and the imposition of taxes on the resources. These extensions were studied intensively with the goal to obtain a precise understanding of the inefficiency of equilibria of these games. In this paper, we introduce a new model of congestion games that captures these extensions (and additional ones) in a unifying way. The key idea here is to parameterize both the perceived cost of each player and the social cost function of the system designer. Intuitively, each player perceives the load induced by the other players by an extent of {\rho}, while the system designer estimates that each player perceives the load of all others by an extent of {\sigma}. The above mentioned extensions reduce to special cases of our model by choosing the parameters {\rho} and {\sigma} accordingly. As in most related works, we concentrate on congestion games with affine latency functions here. Despite the fact that we deal with a more general class of congestion games, we manage to derive tight bounds on the price of anarchy and the price of stability for a large range of pa- rameters. Our bounds provide a complete picture of the inefficiency of equilibria for these perception-parameterized congestion games. As a result, we obtain tight bounds on the price of anarchy and the price of stability for the above mentioned extensions. Our results also reveal how one should "design" the cost functions of the players in order to reduce the price of anar- chy

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    Selfishness Level of Strategic Games

    Get PDF
    We introduce a new measure of the discrepancy in strategic games between the social welfare in a Nash equilibrium and in a social optimum, that we call selfishness level. It is the smallest fraction of the social welfare that needs to be offered to each player to achieve that a social optimum is realized in a pure Nash equilibrium. The selfishness level is unrelated to the price of stability and the price of anarchy and is invariant under positive linear transformations of the payoff functions. Also, it naturally applies to other solution concepts and other forms of games. We study the selfishness level of several well-known strategic games. This allows us to quantify the implicit tension within a game between players' individual interests and the impact of their decisions on the society as a whole. Our analyses reveal that the selfishness level often provides a deeper understanding of the characteristics of the underlying game that influence the players' willingness to cooperate. In particular, the selfishness level of finite ordinal potential games is finite, while that of weakly acyclic games can be infinite. We derive explicit bounds on the selfishness level of fair cost sharing games and linear congestion games, which depend on specific parameters of the underlying game but are independent of the number of players. Further, we show that the selfishness level of the nn-players Prisoner's Dilemma is c/(b(n−1)−c)c/(b(n-1)-c), where bb and cc are the benefit and cost for cooperation, respectively, that of the nn-players public goods game is (1−cn)/(c−1)(1-\frac{c}{n})/(c-1), where cc is the public good multiplier, and that of the Traveler's Dilemma game is 12(b−1)\frac{1}{2}(b-1), where bb is the bonus. Finally, the selfishness level of Cournot competition (an example of an infinite ordinal potential game, Tragedy of the Commons, and Bertrand competition is infinite.Comment: 34 page
    • …
    corecore