648 research outputs found

    Target Detection in a Structured Background Environment Using an Infeasibility Metric in an Invariant Space

    Get PDF
    This paper develops a hybrid target detector that incorporates structured backgrounds and physics based modeling together with a geometric infeasibility metric. More often than not, detection algorithms are usually applied to atmospherically compensated hyperspectral imagery. Rather than compensate the imagery, we take the opposite approach by using a physics based model to generate permutations of what the target might look like as seen by the sensor in radiance space. The development and status of such a method is presented as applied to the generation of target spaces. The generated target spaces are designed to fully encompass image target pixels while using a limited number of input model parameters. Background spaces are modeled using a linear subspace (structured) approach characterized by endmembers found by using the maximum distance method (MaxD). After augmenting the image data with the target space, 15 endmembers were found, which were not related to the target (i.e., background endmembers). A geometric infeasibility metric is developed which enables one to be more selective in rejecting false alarms. Preliminary results in the design of such a metric show that an orthogonal projection operator based on target space vectors can distinguish between target and background pixels. Furthermore, when used in conjunction with an operator that produces abundance-like values, we obtained separation between target, ackground, and anomalous pixels. This approach was applied to HYDICE image spectrometer data

    A subpixel target detection algorithm for hyperspectral imagery

    Get PDF
    The goal of this research is to develop a new algorithm for the detection of subpixel scale target materials on the hyperspectral imagery. The signal decision theory is typically to decide the existence of a target signal embedded in the random noise. This implies that the detection problem can be mathematically formalized by signal decision theory based on the statistical hypothesis test. In particular, since any target signature provided by airborne/spaceborne sensors is embedded in a structured noise such as background or clutter signatures as well as broad band unstructured noise, the problem becomes more complicated, and particularly much more under the unknown noise structure. The approach is based on the statistical hypothesis method known as Generalized Likelihood Ratio Test (GLRT). The use of GLRT requires estimating the unknown parameters, and assumes the prior information of two subspaces describing target variation and background variation respectively. Therefore, this research consists of two parts, the implementation of GLRT and the characterization of two subspaces through new approaches. Results obtained from computer simulation, HYDICE image and AVI RIS image show that this approach is feasible

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems

    Homography-Based State Estimation for Autonomous Exploration in Unknown Environments

    Get PDF
    This thesis presents the development of vision-based state estimation algorithms to enable a quadcopter UAV to navigate and explore a previously unknown GPS denied environment. These state estimation algorithms are based on tracked Speeded-Up Robust Features (SURF) points and the homography relationship that relates the camera motion to the locations of tracked planar feature points in the image plane. An extended Kalman filter implementation is developed to perform sensor fusion using measurements from an onboard inertial measurement unit (accelerometers and rate gyros) with vision-based measurements derived from the homography relationship. Therefore, the measurement update in the filter requires the processing of images from a monocular camera to detect and track planar feature points followed by the computation of homography parameters. The state estimation algorithms are designed to be independent of GPS since GPS can be unreliable or unavailable in many operational environments of interest such as urban environments. The state estimation algorithms are implemented using simulated data from a quadcopter UAV and then tested using post processed video and IMU data from flights of an autonomous quadcopter. The homography-based state estimation algorithm was effective, but accumulates drift errors over time due to the relativistic homography measurement of position

    Hyperspectral sub-pixel target detection using hybrid algorithms and Physics Based Modeling

    Get PDF
    This thesis develops a new hybrid target detection algorithm called the Physics Based-Structured InFeasibility Target-detector (PB-SIFT) which incorporates Physics Based Modeling (PBM) along with a new Structured Infeasibility Projector (SIP) metric. Traditional matched filters are susceptible to leakage or false alarms due to bright or saturated pixels that appear target-like to hyperspectral detection algorithms but are not truly target. This detector mitigates against such false alarms. More often than not, detection algorithms are applied to atmospherically compensated hyperspectral imagery. Rather than compensate the imagery, we take the opposite approach by using a physics based model to generate permutations of what the target might look like as seen by the sensor in radiance space. The development and status of such a method is presented as applied to the generation of target spaces. The generated target spaces are designed to fully encompass image target pixels while using a limited number of input model parameters. Evaluation of such target spaces shows that they can reproduce a HYDICE image target pixel spectrum to less than 1% RMS error (equivalent reflectance) in the visible and less than 6% in the near IR. Background spaces are modeled using a linear subspace (structured) approach characterized by basis vectors found by using the maximum distance method (MaxD). The SIP is developed along with a Physics Based Orthogonal Projection Operator (PBosp) which produces a 2 dimensional decision space. Results from the HYDICE FR I data set show that the physics based approach, along with the PB-SIFT algorithm, can out perform the Spectral Angle Mapper (SAM) and Spectral Matched Filter (SMF) on both exposed and fully concealed man-made targets found in hyperspectral imagery. Furthermore, the PB-SIFT algorithm performs as good (if not better) than the Mixture Tuned Matched Filter (MTMF)

    A Wideband Direction of Arrival Technique for Multibeam, Wide-Swath Imaging of Ice Sheet Basal Morphology

    Get PDF
    Multichannel, ice sounder data can be processed to three-dimensionally map ice sheet bed topography and basal reflectivity using tomographic imaging techniques. When ultra-wideband (UWB) signals are used to interrogate a glaciological target, fine resolution maps can be obtained. These data sets facilitate both process studies of ice sheet dynamics and also continental-scale ice sheet modeling needed to predict future sea level. The socioeconomic importance of these data as well as the cost and logistical challenge of procuring them justifies the need to image ice sheet basal morphology over a wider swath. Imaging wide swaths with UWB signals poses challenges for the array processing methods that have been used to localize scattering in the cross-track dimension. Both MUltiple SIgnal Classification (MUSIC) and the Maximum Likelihood Estimator (MLE) have been applied to the ice sheet tomography problem. These techniques are formulated assuming a narrowband model of the array that breaks down in wideband signal environments when the direction of arrival (DOA) increases further off nadir. The Center for Remote Sensing of Ice Sheets (CReSIS) developed a UWB multichannel SAR with a large cross-track array for sounding and imaging polar ice from a Basler BT-67 aircraft. In 2013, this sensor collected data in a multibeam mode over the West Antarctic Ice Sheet to demonstrate wide swath imaging. To reliably estimate the arrival angles of echoes from the edges of the swath, a parametric space-time direction of arrival estimator was developed that obtains an estimate of the DOA by fitting the observed space-time covariance structure to a model. This thesis focuses on the development and optimization of the algorithm and describes its predicted performance based on simulation. Its measured performance is analyzed with 3D tomographic basal maps of an ice stream in West Antarctica that were generated using the technique

    ARRAY PROCESSING TECHNIQUES FOR ESTIMATION AND TRACKING OF AN ICE-SHEET BOTTOM

    Get PDF
    Ice bottom topography layers are an important boundary condition required to model the flow dynamics of an ice sheet. In this work, using low frequency multichannel radar data, we locate the ice bottom using two types of automatic trackers. First, we use the multiple signal classification (MUSIC) beamformer to determine the pseudo-spectrum of the targets at each range-bin. The result is passed into a sequential tree-reweighted message passing belief-propagation algorithm to track the bottom of the ice in the 3D image. This technique is successfully applied to process data collected over the Canadian Arctic Archipelago ice caps in 2014, and produce digital elevation models (DEMs) for 102 data frames. We perform crossover analysis to self-assess the generated DEMs, where flight paths cross over each other and two measurements are made at the same location. Also, the tracked results are compared before and after manual corrections. We found that there is a good match between the overlapping DEMs, where the mean error of the crossover DEMs is 38±7 m, which is small relative to the average ice-thickness, while the average absolute mean error of the automatically tracked ice-bottom, relative to the manually corrected ice-bottom, is 10 range-bins. Second, a direction of arrival (DOA)-based tracker is used to estimate the DOA of the backscatter signals sequentially from range bin to range bin using two methods: a sequential maximum a posterior probability (S-MAP) estimator and one based on the particle filter (PF). A dynamic flat earth transition model is used to model the flow of information between range bins. A simulation study is performed to evaluate the performance of these two DOA trackers. The results show that the PF-based tracker can handle low-quality data better than S-MAP, but, unlike S-MAP, it saturates quickly with increasing numbers of snapshots. Also, S-MAP is successfully applied to track the ice-bottom of several data frames collected from over Russell glacier in 2011, and the results are compared against those generated by the beamformer-based tracker. The results of the DOA-based techniques are the final tracked surfaces, so there is no need for an additional tracking stage as there is with the beamformer technique

    Feature extraction and fusion for classification of remote sensing imagery

    Get PDF
    • …
    corecore