83 research outputs found

    Quantifying TRM by Modified DCQ Load Flow Method

    Get PDF
    In the integrated power system network uncertainty can occur at any time. The transmission reliability (TRM) margin is the amount of transmission capacity that guarantees that the transmission network is protected from instability in the operating state of the system. The calculation of the available transfer capacity (ATC) of the transmission reliability margin should be included in a deregulated power system to ensure that the transmission network is safe within a fair range of uncertainties that arise during the power transfer. However, the TRM is conserved as a reliability margin to reflect the unpredictability of the operation of the electric system. Besides, the system operator (SO) utilizes the TRM value during unreliability by adjusting the ATC value some amount up or down to account for errors in data and uncertainty in the model. This paper describes a technique for TRM estimation by modified DCQ load flow method considering VAR transfer distribution factor. The main focus of this study is to get a new approach to determine TRM by incorporating with ATCQ considered reactive power and sensitivity w.r.t ATC considered voltage magnitude. This technique is applied to the IEEE 6 bus system, and results are compared with previous results for validation. The technique leads to more exact and secure estimates of transmission reliability margin

    Dried chili seeds separator machine

    Get PDF
    Chili is a fruit of Capsicum plants [1]. The fruit is known as vegetable which is cultivated as food. Also, it is known as ‘Lada’ (in East Coast) or chili. It produces small flowers that turn into fruits in every branch of leaves. Chili is rich in vitamin C, vitamin A and minerals such as iron, calcium, phosphorus, sodium and potassium. Moreover, this vegetable is said to be worth in terms of relieving pain associated with obesity. Besides, it is good for blood circulation and to sore throat infections. Additionally, Cayenne pepper contains substance that prevents blood clotting, from a disease called thrombosis [2]

    Credibility theory-based available transfer capability assessment

    Get PDF
    Since the development of large scale power grid interconnections and power markets, research on available transfer capability (ATC) has attracted great attention. The challenges for accurate assessment of ATC originate from the numerous uncertainties in electricity generation, transmission, distribution and utilization sectors. Power system uncertainties can be mainly described as two types: randomness and fuzziness. However, the traditional transmission reliability margin (TRM) approach only considers randomness. Based on credibility theory, this paper firstly built models of generators, transmission lines and loads according to their features of both randomness and fuzziness. Then a random fuzzy simulation is applied, along with a novel method proposed for ATC assessment, in which both randomness and fuzziness are considered. The bootstrap method and multi-core parallel computing technique are introduced to enhance the processing speed. By implementing simulation for the IEEE-30-bus system and a real-life system located in Northwest China, the viability of the models and the proposed method is verified

    Flexible Transmission: A Comprehensive Review of Concepts, Technologies, and Market

    Full text link
    As global concerns regarding climate change are increasing worldwide, the transition towards clean energy sources has accelerated. Accounting for a large share of energy consumption, the electricity sector is experiencing a significant shift towards renewable energy sources. To accommodate this rapid shift, the transmission system requires major upgrades. Although enhancing grid capacity through transmission system expansion is always a solution, this solution is very costly and requires a protracted permitting process. The concept of flexible transmission encompasses a broad range of technologies and market tools that enable effective reconfiguration and manipulation of the power grid for leveraged dispatch of renewable energy resources. The proliferation of such technologies allows for enhanced transfer capability over the current transmission network, thus reducing the need for grid expansion projects. This paper comprehensively reviews flexible transmission technologies and their role in achieving a net-zero carbon emission grid vision. Flexible transmission definitions from different viewpoints are discussed, and mathematical measures to quantify grid flexibility are reviewed. An extensive range of technologies enhancing flexibility across the grid is introduced and explored in detail. The environmental impacts of flexible transmission, including renewable energy utilization and carbon emission reduction, are presented. Finally, market models required for creating proper incentives for the deployment of flexible transmission and regulatory barriers and challenges are discussed

    Accommodating Uncertainty in the Planning and Operations of Electric Power Systems

    Full text link

    Economic efficiencies of the energy flows from the primary resource suppliers to the electric load centers

    Get PDF
    The economic efficiency of the electric energy system depends not only on the performance of the electric generation and transmission subsystems, but also on the ability to produce and transport the various forms of primary energy, particularly coal and natural gas. However, electric power systems have traditionally been developed and operated without a conscious awareness of the energy system-wide implications, namely the consideration of the integrated dynamics with the fuel markets and infrastructures. This has been partly due to the difficulty of formulating models capable of analyzing the large-scale, complex, time-dependent, and highly interconnected behavior of the integrated energy system. In this dissertation, a novel approach for studying the movements of coal, natural gas, and electricity in an integrated fashion is presented. Conceptually, the model developed is a simplified representation of the national infrastructures, structured as a generalized, multiperiod network composed of nodes and arcs. Under this formulation, fuel supply and electricity demand nodes are connected via a transportation network and the model is solved for the most efficient allocation of quantities and corresponding prices for the mutual benefits of all. The synergistic action of economic, physical, and environmental constraints produces the optimal pattern of energy flows. Key data elements are derived from various publicly available sources, including publications from the Energy Information Administration, survey forms administered by the Federal Energy Regulatory Commission, and databases maintained by the Environmental Protection Agency. The results of different test cases are analyzed to demonstrate that the decentralized level of decision-making combined with imperfect competition may be preventing the realization of potential cost savings. An overall optimization at the national level shows that there are opportunities to better utilize low cost generators, curtailing usage of higher cost units and increasing electric power trade, which would ultimately allow customers to benefit from lower electricity prices. In summary, the model developed is a simulation tool that helps build a better understanding of the complex dynamics and interdependencies of the coal, natural gas, and electricity networks. It enables public and private decision makers to carry out comprehensive analyses of a wide range of issues related to the energy sector, such as strategic planning, economic impact assessment, and the effects of different regulatory regimes
    • …
    corecore