967 research outputs found

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    BarrierPoint: sampled simulation of multi-threaded applications

    Get PDF
    Sampling is a well-known technique to speed up architectural simulation of long-running workloads while maintaining accurate performance predictions. A number of sampling techniques have recently been developed that extend well- known single-threaded techniques to allow sampled simulation of multi-threaded applications. Unfortunately, prior work is limited to non-synchronizing applications (e.g., server throughput workloads); requires the functional simulation of the entire application using a detailed cache hierarchy which limits the overall simulation speedup potential; leads to different units of work across different processor architectures which complicates performance analysis; or, requires massive machine resources to achieve reasonable simulation speedups. In this work, we propose BarrierPoint, a sampling methodology to accelerate simulation by leveraging globally synchronizing barriers in multi-threaded applications. BarrierPoint collects microarchitecture-independent code and data signatures to determine the most representative inter-barrier regions, called barrierpoints. BarrierPoint estimates total application execution time (and other performance metrics of interest) through detailed simulation of these barrierpoints only, leading to substantial simulation speedups. Barrierpoints can be simulated in parallel, use fewer simulation resources, and define fixed units of work to be used in performance comparisons across processor architectures. Our evaluation of BarrierPoint using NPB and Parsec benchmarks reports average simulation speedups of 24.7x (and up to 866.6x) with an average simulation error of 0.9% and 2.9% at most. On average, BarrierPoint reduces the number of simulation machine resources needed by 78x

    Effective interprocess communication (IPC) in a real-time transputer network

    Get PDF
    The thesis describes the design and implementation of an interprocess communication (IPC) mechanism within a real-time distributed operating system kernel (RT-DOS) which is designed for a transputer-based network. The requirements of real-time operating systems are examined and existing design and implementation strategies are described. Particular attention is paid to one of the object-oriented techniques although it is concluded that these techniques are not feasible for the chosen implementation platform. Studies of a number of existing operating systems are reported. The choices for various aspects of operating system design and their influence on the IPC mechanism to be used are elucidated. The actual design choices are related to the real-time requirements and the implementation that has been adopted is described. [Continues.

    Parallel Processes in HPX: Designing an Infrastructure for Adaptive Resource Management

    Get PDF
    Advancement in cutting edge technologies have enabled better energy efficiency as well as scaling computational power for the latest High Performance Computing(HPC) systems. However, complexity, due to hybrid architectures as well as emerging classes of applications, have shown poor computational scalability using conventional execution models. Thus alternative means of computation, that addresses the bottlenecks in computation, is warranted. More precisely, dynamic adaptive resource management feature, both from systems as well as application\u27s perspective, is essential for better computational scalability and efficiency. This research presents and expands the notion of Parallel Processes as a placeholder for procedure definitions, targeted at one or more synchronous domains, meta data for computation and resource management as well as infrastructure for dynamic policy deployment. In addition to this, the research presents additional guidelines for a framework for resource management in HPX runtime system. Further, this research also lists design principles for scalability of Active Global Address Space (AGAS), a necessary feature for Parallel Processes. Also, to verify the usefulness of Parallel Processes, a preliminary performance evaluation of different task scheduling policies is carried out using two different applications. The applications used are: Unbalanced Tree Search, a reference dynamic graph application, implemented by this research in HPX and MiniGhost, a reference stencil based application using bulk synchronous parallel model. The results show that different scheduling policies provide better performance for different classes of applications; and for the same application class, in certain instances, one policy fared better than the others, while vice versa in other instances, hence supporting the hypothesis of the need of dynamic adaptive resource management infrastructure, for deploying different policies and task granularities, for scalable distributed computing

    A Simple MPI Library for Lightweight Manycore Processors

    Get PDF
    TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Ciências da Computação.Nas últimas décadas, melhorar o desempenho de núcleos individuais e aumentar o nú- mero de núcleos de alta potência por chip foram as principais tendências na construção de processadores. No entanto, esta combinação levou não apenas a um aumento no poder computacional, mas também a um aumento considerável no seu consumo de energia. Há uma preocupação crescente entre a comunidade científica a respeito da eficiência ener- gética dos supercomputadores modernos. Nos últimos anos, muitos esforços têm sido feitos em pesquisas, buscando soluções alternativas capazes de resolver este problema de escalabilidade e eficiência energética. O desempenho e a eficiência energética providos pelos manycores leves são inegáveis. Contudo, a falta de suporte avançado e portátil para esses processadores, como interfaces padrão de alto desempenho para o desenvolvi- mento de código portável, torna o desenvolvimento de software um desafio. Atualmente, duas abordagens são empregadas tentando aumentar a programabilidade em manycores leves: Sistemas operacionais (SOs) e sistemas de execução (runtimes). A primeira fornece portabilidade mas expõe interfaces de programação complexas no nível do SO aos desen- volvedores. Já a segunda se concentra em fornecer interfaces ricas e de alto desempenho, as quais são específicas do fabricante e resultam em software não portável. Portanto, as soluções existentes forçam os desenvolvedores a escolher entre a portabilidade do software ou um processo de desenvolvimento mais rápido. Para resolver esse dilema, neste traba- lho é proposta uma biblioteca MPI leve e portável (LWMPI) projetada do zero para lidar com as restrições e complexidades dos manycores leves. A LWMPI foi integrada a um SO direcionado a esses processadores, oferecendo assim uma melhor programabilidade e portabilidade implícita para manycores leves, sem incorrer em sobrecargas de desempe- nho excessivas que inviabilizariam o seu uso. Para fornecer uma avaliação abrangente da LWMPI, foram utilizadas três aplicações de uma suíte de benchmarking representativa, usada para avaliar o desempenho de manycores leves, além de um benchmark sintético. Os resultados obtidos no processador Kalray MPPA-256 revelaram que a LWMPI atinge uma performance e uma escalabilidade de desempenho melhor do que uma solução feita especificamente para essa análise e que se utiliza puramente das abstrações de IPC do Nanvix, ao mesmo tempo em que oferece uma interface de programação mais rica.In the last decades, improving the performance of individual cores and increasing the number of high power cores per chip were the main trends in the construction of proces- sors. However, this combination led not only to an increase in the computing capacity, but also to a considerable growth in energy consumption. There is a crescent concern among the scientific community about the energy efficiency of modern supercomputers. In the last years, many efforts have been made in research, searching for alternative solutions capable of solving this problem of scalability and energy efficiency. The performance and energy efficiency provided by lightweight manycores is undeniable. Although, the lack of rich and portable support for these processors, such as high-performance standard inter- faces that deliver portable source codes, makes software development a challenging task. Currently, two approaches are employed trying to improve programmability in lightweight manycores: Operating Systems (OSes) and baremetal runtime systems. The former pro- vides portability but exposes complex OS-level programming interfaces to developers. The latter focuses on providing rich and high performance interfaces, which are vendor- specific and yield to non-portable software. Thus, the existing solutions force software engineers to choose between software portability or a faster development process. To address this dilemma, we propose a portable and lightweight MPI library (LWMPI) de- signed from scratch to cope with restrictions and intricacies of lightweight manycores. We integrated LWMPI into a distributed OS that targets these processors, thus featuring bet- ter programmability and implicit portability for lightweight manycores, without incurring excessive performance overheads that could hinder its use. To deliver a comprehensive evaluation of LWMPI, we relied on three applications from a representative benchmark suite used to assess the performance of lightweight manycores, and a synthetic benchmark. Our results obtained on the Kalray MPPA-256 processor unveiled that LWMPI present better performance and scalability when compared with a specifically made solution that uses the raw Nanvix Inter-Process Communication (IPC) abstractions, while exposing a richer programming interface

    Design and implementation of a container-based architecture for real-time control applications

    Get PDF
    The fourth industrial revolution and the advent of cyber-physical systems increase the flexibility and effectiveness in production, but they also change the role of software. Traditional monolithic systems need to split up in order to increase flexibility, maintainability and performance. There are existing approaches transforming traditional software towards a cloud-based infrastructure, but little work is done in applying this to real-time applications. This work proposes an architecture that uses containers to modularize real-time control applications, messaging for communication and a hardware abstraction layer to improve maintainability, reusability and flexibility. Using a prototypical implementation of the architecture, we validate the feasibility of this approach through a benchmark.Die vierte industrielle Revolution und die aufkommende Verbreitung von cyberphysikalischen Systemen (CPS) erhöht die Fliexibilität und Effektivität von Produktionsanlagen, ändert jedoch auch die Rolle der Software. Traditionelle monolitische Systeme müssen aufgesplittet werden, um die Flexibilität, Wartbarkeit und Performanz zu erhöhen. Es gibt bereits Ansätze, traditionelle Software in eine Cloud-basierte Infrastruktur zu transformieren, aber bisher gibt es wenige Arbeiten darüber, wie dies auf Echtzeitanwendungen übertragen werden kann. Diese Arbeit stellt eine Architektur vor, die Container verwendet, um Echtzeit-Steueranwendungen zu modularisieren, und außerdem Messaging zur Kommunikation und eine Hardware-Abstraktions-Schicht einsetzt, um Wartbarkeit, Wiederverwendbarkeit und Flexibilität verbessert. Mit einer prototypischen Implementierung der Architektur wird der Ansatz mit einem Benchmark evaluiert
    corecore