54,064 research outputs found

    Acoustic sensing as a novel wearable approach for cardiac monitoring at the wrist

    Get PDF
    This paper introduces the concept of using acoustic sensing over the radial artery to extract cardiac parameters for continuous vital sign monitoring. It proposes a novel measurement principle that allows detection of the heart sounds together with the pulse wave, an attribute not possible with existing photoplethysmography (PPG)-based methods for monitoring at wrist. The validity of the proposed principle is demonstrated using a new miniature, battery-operated wearable device to sense the acoustic signals and a novel algorithm to extract the heart rate from these signals. The algorithm utilizes the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. It has been validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78\%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. The results in this proof of concept study demonstrate the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for continuous monitoring of heart rate at wrist

    Infrared thermography-calorimetric quantitation of energy expenditure in biomechanically different types of jĆ«dƍ throwing techniques: a pilot study

    Get PDF
    It was the purpose of this pilot study to assess the energy expenditure (EE) of two biome-chanically different jĆ«dƍ throws, namely, the simple mechanical couple-based uchi-mata vs. the lever-based throw ippon-seoi-nage, using infrared thermal calorimetry (ITC). Testing subjects included one Caucasian female elite athlete (age: 26.4 years) and one male veteran jĆ«dƍka (age: 50.8 years). ITC images were captured by an Avio NEC InfRec R300 camera and thermal data obtained were plotted into a proprietary equation for estimation of EE. Data were compared to respiratory data obtained by a Cosmed K4 b2 portable gas analyzer. Oxy-gen consumption as estimated by ITC capture during practice of uchi-mata was markedly lower than during performance ippon-seoi-nage in the female (457 mL‱min-1 vs. 540 mL‱min-1, P<0.05) and male subject (1,078 mL‱min-1 vs. 1,088 mL‱min-1, NS), with the difference in values between both genders subject being significant (P<0.01). The metabolic cost of the exercise (uchi-mata vs. ippon-seoi-nage) itself was 1.26 kcal‱min-1 (88 W) vs. 1.68 kcal‱min-1 (117 W) (P<0.05) in the female subject, and 2.97 kcal‱min-1 (207 W) (P<0.01) vs. 3.02 kcal‱min-1 (211 W) (NS) in the male subject. Values for the female were significantly differ-ent (P<0.01) from those of the male subject. The results support the initial hypothesis that the couple-based jĆ«dƍ throws (in this case, uchi-mata) are energetically more efficient than lever-based throws, such as ippon-seoi-nage. Application of this approach may be of practical use for coaches in optimizing energy-saving strategies in both elite and veteran jĆ«dƍ athletes

    Real-time Assessment of Right and Left Ventricular Volumes and Function in Children Using High Spatiotemporal Resolution Spiral bSSFP with Compressed Sensing

    Get PDF
    Background: Real-time (RT) assessment of ventricular volumes and function enables data acquisition during free-breathing. However, in children the requirement for high spatiotemporal resolution requires accelerated imaging techniques. In this study, we implemented a novel RT bSSFP spiral sequence reconstructed using Compressed Sensing (CS) and validated it against the breath-hold (BH) reference standard for assessment of ventricular volumes in children with heart disease. Methods: Data was acquired in 60 children. Qualitative image scoring and evaluation of ventricular volumes was performed by 3 clinical cardiac MR specialists. 30 cases were reassessed for intra-observer variability, and the other 30 cases for inter-observer variability. Results: Spiral RT images were of good quality, however qualitative scores reflected more residual artefact than standard BH images and slightly lower edge definition. Quantification of Left Ventricular (LV) and Right Ventricular (RV) metrics showed excellent correlation between the techniques with narrow limits of agreement. However, we observed small but statistically significant overestimation of LV end-diastolic volume, underestimation of LV end-systolic volume, as well as a small overestimation of RV stroke volume and ejection fraction using the RT imaging technique. No difference in inter-observer or intra-observer variability were observed between the BH and RT sequences. Conclusions: Real-time bSSFP imaging using spiral trajectories combined with a compressed sensing reconstruction is feasible. The main benefit is that it can be acquired during free breathing. However, another important secondary benefit is that a whole ventricular stack can be acquired in ~20 seconds, as opposed to ~6 minutes for standard BH imaging. Thus, this technique holds the potential to significantly shorten MR scan times in children

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing
    • 

    corecore