227 research outputs found

    Chaos and Complexity of quantum motion

    Full text link
    The problem of characterizing complexity of quantum dynamics - in particular of locally interacting chains of quantum particles - will be reviewed and discussed from several different perspectives: (i) stability of motion against external perturbations and decoherence, (ii) efficiency of quantum simulation in terms of classical computation and entanglement production in operator spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing, and (iv) computation of quantum dynamical entropies. Discussions of all these criteria will be confronted with the established criteria of integrability or quantum chaos, and sometimes quite surprising conclusions are found. Some conjectures and interesting open problems in ergodic theory of the quantum many problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special issue on Quantum Informatio

    Consistent nonparametric Bayesian inference for discretely observed scalar diffusions

    Get PDF
    We study Bayes procedures for the problem of nonparametric drift estimation for one-dimensional, ergodic diffusion models from discrete-time, low-frequency data. We give conditions for posterior consistency and verify these conditions for concrete priors, including priors based on wavelet expansions.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ385 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Central limit theorem for biased random walk on multi-type Galton-Watson trees

    Full text link
    Let T be a rooted supercritical multi-type Galton-Watson (MGW) tree with types coming from a finite alphabet, conditioned to non-extinction. The lambda-biased random walk (X_t, t>=0) on T is the nearest-neighbor random walk which, when at a vertex v with d(v) offspring, moves closer to the root with probability lambda/[lambda+d(v)], and to each of the offspring with probability 1/[lambda+d(v)]. This walk is recurrent for lambda>=rho and transient for 0<lambda<rho, with rho the Perron-Frobenius eigenvalue for the (assumed) irreducible matrix of expected offspring numbers. Subject to finite moments of order p>4 for the offspring distributions, we prove the following quenched CLT for lambda-biased random walk at the critical value lambda=rho: for almost every T, the process |X_{floor(nt)}|/sqrt{n} converges in law as n tends to infinity to a reflected Brownian motion rescaled by an explicit constant. This result was proved under some stronger assumptions by Peres-Zeitouni (2008) for single-type Galton-Watson trees. Following their approach, our proof is based on a new explicit description of a reversing measure for the walk from the point of view of the particle (generalizing the measure constructed in the single-type setting by Peres-Zeitouni), and the construction of appropriate harmonic coordinates. In carrying out this program we prove moment and conductance estimates for MGW trees, which may be of independent interest. In addition, we extend our construction of the reversing measure to a biased random walk with random environment (RWRE) on MGW trees, again at a critical value of the bias. We compare this result against a transience-recurrence criterion for the RWRE generalizing a result of Faraud (2011) for Galton-Watson trees.Comment: 44 pages, 1 figur
    corecore