12,151 research outputs found

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    How to Price Shared Optimizations in the Cloud

    Full text link
    Data-management-as-a-service systems are increasingly being used in collaborative settings, where multiple users access common datasets. Cloud providers have the choice to implement various optimizations, such as indexing or materialized views, to accelerate queries over these datasets. Each optimization carries a cost and may benefit multiple users. This creates a major challenge: how to select which optimizations to perform and how to share their cost among users. The problem is especially challenging when users are selfish and will only report their true values for different optimizations if doing so maximizes their utility. In this paper, we present a new approach for selecting and pricing shared optimizations by using Mechanism Design. We first show how to apply the Shapley Value Mechanism to the simple case of selecting and pricing additive optimizations, assuming an offline game where all users access the service for the same time-period. Second, we extend the approach to online scenarios where users come and go. Finally, we consider the case of substitutive optimizations. We show analytically that our mechanisms induce truth- fulness and recover the optimization costs. We also show experimentally that our mechanisms yield higher utility than the state-of-the-art approach based on regret accumulation.Comment: VLDB201

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    Learned Cardinalities: Estimating Correlated Joins with Deep Learning

    Get PDF
    We describe a new deep learning approach to cardinality estimation. MSCN is a multi-set convolutional network, tailored to representing relational query plans, that employs set semantics to capture query features and true cardinalities. MSCN builds on sampling-based estimation, addressing its weaknesses when no sampled tuples qualify a predicate, and in capturing join-crossing correlations. Our evaluation of MSCN using a real-world dataset shows that deep learning significantly enhances the quality of cardinality estimation, which is the core problem in query optimization.Comment: CIDR 2019. https://github.com/andreaskipf/learnedcardinalitie
    • …
    corecore