2,938 research outputs found

    Adaptive Obstacle Avoidance for a Class of Collaborative Robots

    Get PDF
    In a human–robot collaboration scenario, operator safety is the main problem and must be guaranteed under all conditions. Collision avoidance control techniques are essential to improve operator safety and robot flexibility by preventing impacts that can occur between the robot and humans or with objects inadvertently left within the operational workspace. On this basis, collision avoidance algorithms for moving obstacles are presented in this paper: inspired by algorithms already developed by the authors for planar manipulators, algorithms are adapted for the 6-DOF collaborative manipulators by Universal Robots, and some new contributions are introduced. First, in this work, the safety region wrapping each link of the manipulator assumes a cylindrical shape whose radius varies according to the speed of the colliding obstacle, so that dynamical obstacles are avoided with increased safety regions in order to reduce the risk, whereas fixed obstacles allow us to use smaller safety regions, facilitating the motion of the robot. In addition, three different modalities for the collision avoidance control law are proposed, which differ in the type of motion admitted for the perturbation of the end-effector: the general mode allows for a 6-DOF perturbation, but restrictions can be imposed on the orientation part of the avoidance motion using 4-DOF or 3-DOF modes. In order to demonstrate the effectiveness of the control strategy, simulations with dynamic and fixed obstacles are presented and discussed. Simulations are also used to estimate the required computational effort in order to verify the transferability to a real system

    Robocatch: Design and Making of a Hand-Held Spillage-Free Specimen Retrieval Robot for Laparoscopic Surgery

    Get PDF
    Specimen retrieval is an important step in laparoscopy, a minimally invasive surgical procedure performed to diagnose and treat a myriad of medical pathologies in fields ranging from gynecology to oncology. Specimen retrieval bags (SRBs) are used to facilitate this task, while minimizing contamination of neighboring tissues and port-sites in the abdominal cavity. This manual surgical procedure requires usage of multiple ports, creating a traffic of simultaneous operations of multiple instruments in a limited shared workspace. The skill-demanding nature of this procedure makes it time-consuming, leading to surgeons’ fatigue and operational inefficiency. This thesis presents the design and making of RoboCatch, a novel hand-held robot that aids a surgeon in performing spillage-free retrieval of operative specimens in laparoscopic surgery. The proposed design significantly modifies and extends conventional instruments that are currently used by surgeons for the retrieval task: The core instrumentation of RoboCatch comprises a webbed three-fingered grasper and atraumatic forceps that are concentrically situated in a folded configuration inside a trocar. The specimen retrieval task is achieved in six stages: 1) The trocar is introduced into the surgical site through an instrument port, 2) the three webbed fingers slide out of the tube and simultaneously unfold in an umbrella like-fashion, 3) the forceps slide toward, and grasp, the excised specimen, 4) the forceps retract the grasped specimen into the center of the surrounding grasper, 5) the grasper closes to achieve a secured containment of the specimen, and 6) the grasper, along with the contained specimen, is manually removed from the abdominal cavity. The resulting reduction in the number of active ports reduces obstruction of the port-site and increases the procedure’s efficiency. The design process was initiated by acquiring crucial parameters from surgeons and creating a design table, which informed the CAD modeling of the robot structure and selection of actuation units and fabrication material. The robot prototype was first examined in CAD simulation and then fabricated using an Objet30 Prime 3D printer. Physical validation experiments were conducted to verify the functionality of different mechanisms of the robot. Further, specimen retrieval experiments were conducted with porcine meat samples to test the feasibility of the proposed design. Experimental results revealed that the robot was capable of retrieving masses of specimen ranging from 1 gram to 50 grams. The making of RoboCatch represents a significant step toward advancing the frontiers of hand-held robots for performing specimen retrieval tasks in minimally invasive surgery

    The Effects Of Video Frame Delay And Spatial Ability On The Operation Of Multiple Semiautonomous And Tele-operated Robots

    Get PDF
    The United States Army has moved into the 21st century with the intent of redesigning not only the force structure but also the methods by which we will fight and win our nation\u27s wars. Fundamental in this restructuring is the development of the Future Combat Systems (FCS). In an effort to minimize exposure of front line soldiers the future Army will utilize unmanned assets for both information gathering and when necessary engagements. Yet this must be done judiciously, as the bandwidth for net-centric warfare is limited. The implication is that the FCS must be designed to leverage bandwidth in a manner that does not overtax computational resources. In this study alternatives for improving human performance during operation of teleoperated and semi-autonomous robots were examined. It was predicted that when operating both types of robots, frame delay of the semi-autonomous robot would improve performance because it would allow operators to concentrate on the constant workload imposed by the teleoperated while only allocating resources to the semi-autonomous during critical tasks. An additional prediction was that operators with high spatial ability would perform better than those with low spatial ability, especially when operating an aerial vehicle. The results can not confirm that frame delay has a positive effect on operator performance, though power may have been an issue, but clearly show that spatial ability is a strong predictor of performance on robotic asset control, particularly with aerial vehicles. In operating the UAV, the high spatial group was, on average, 30% faster, lazed 12% more targets, and made 43% more location reports than the low spatial group. The implications of this study indicate that system design should judiciously manage workload and capitalize on individual ability to improve performance and are relevant to system designers, especially in the military community

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation

    Get PDF
    The upper limb rehabilitation robots have made it possible to improve the motor recovery in stroke survivors while reducing the burden on physical therapists. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. To be aligned with the most biomechanically complex joint of human body, the shoulder, specific considerations have to be made in the design of robotic shoulder exoskeletons. It is important to assist all shoulder degrees-of-freedom (DOFs) when implementing robotic exoskeletons for rehabilitation purposes to increase the range of motion (ROM) and avoid any joint axes misalignments between the robot and human’s shoulder that cause undesirable interaction forces and discomfort to the user. The main objective of this work is to design a safe and a robotic exoskeleton for shoulder rehabilitation with physiologically correct movements, lightweight modules, self-alignment characteristics and large workspace. To achieve this goal a comprehensive review of the existing shoulder rehabilitation exoskeletons is conducted first to outline their main advantages and disadvantages, drawbacks and limitations. The research has then focused on biomechanics of the human shoulder which is studied in detail using robotic analysis techniques, i.e. the human shoulder is modelled as a mechanism. The coupled constrained structure of the robotic exoskeleton connected to a human shoulder is considered as a hybrid human-robot mechanism to solve the problem of joint axes misalignments. Finally, a real-scale prototype of the robotic shoulder rehabilitation exoskeleton was built to test its operation and its ability for shoulder rehabilitation
    • …
    corecore