1,546 research outputs found

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Performance enhancement of large scale networks with heterogeneous traffic.

    Get PDF
    Finally, these findings are applied towards improving the performance of the Differentiated Services architecture by developing a new Refined Assured Forwarding framework where heterogeneous traffic flows share the same aggregate class. The new framework requires minimal modification to the existing Diffserv routers. The efficiency of the new architecture in enhancing the performance of Diffserv is demonstrated by simulation results under different traffic scenarios.This dissertation builds on the notion that segregating traffic with disparate characteristics into separate channels generally results in a better performance. Through a quantitative analysis, it precisely defines the number of classes and the allocation of traffic into these classes that will lead to optimal performance from a latency standpoint. Additionally, it weakens the most generally used assumption of exponential or geometric distribution of traffic service time in the integration versus segregation studies to date by including self-similarity in network traffic.The dissertation also develops a pricing model based on resource usage in a system with segregated channels. Based on analytical results, this dissertation proposes a scheme whereby a service provider can develop compensatory and fair prices for customers with varying QoS requirements under a wide variety of ambient traffic scenarios.This dissertation provides novel techniques for improving the Quality of Service by enhancing the performance of queue management in large scale packet switched networks with a high volume of traffic. Networks combine traffic from multiple sources which have disparate characteristics. Multiplexing such heterogeneous traffic usually results in adverse effects on the overall performance of the network

    Feedback-control & queueing theory-based resource management for streaming applications

    Get PDF
    Recent advances in sensor technologies and instrumentation have led to an extraordinary growth of data sources and streaming applications. A wide variety of devices, from smart phones to dedicated sensors, have the capability of collecting and streaming large amounts of data at unprecedented rates. A number of distinct streaming data models have been proposed. Typical applications for this include smart cites & built environments for instance, where sensor-based infrastructures continue to increase in scale and variety. Understanding how such streaming content can be processed within some time threshold remains a non-trivial and important research topic. We investigate how a cloud-based computational infrastructure can autonomically respond to such streaming content, offering Quality of Service guarantees. We propose an autonomic controller (based on feedback control and queueing theory) to elastically provision virtual machines to meet performance targets associated with a particular data stream. Evaluation is carried out using a federated Cloud-based infrastructure (implemented using CometCloud) – where the allocation of new resources can be based on: (i) differences between sites, i.e. types of resources supported (e.g. GPU vs. CPU only), (ii) cost of execution; (iii) failure rate and likely resilience, etc. In particular, we demonstrate how Little’s Law –a widely used result in queuing theory– can be adapted to support dynamic control in the context of such resource provisioning

    Adaptive admission control in a NGN service platform

    Get PDF
    http://wts2010.eng.usf.edu/In NGN service-provisioning platforms the existence of an efficient and flexible admission control mechanism is essential for providing quality of service in a reliable and stable way, avoiding congestion scenarios caused by indiscriminate and uncontrolled service requests. The capability of modulating and regulating the rate of call acceptance, and provide service differentiation allow indirect control of the load submitted to the platform. This paper presents a service admission control solution that enables to differentiate, limit and modulate the rate by which service requests are submitted into a NGN service-provisioning platform. The solution is focused on providing a fair level of bandwidth sharing among service classes, in a configurable and dynamic way so that it can adapt the distribution by which service requests are served. To sustain the design goals of our solution, major scheduling disciplines and rate control mechanisms are here studied and compared in order to elect the more adequate components. The implemented solution was submitted to unit and charge tests; the results show its effectiveness and robustness in controlling and differentiating incoming service calls

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Dynamic Time Windows and Generalized Virtual Clocks-Combined Closed-Loop/Open-Loop Mechanisms for Congestion Control of Data Traffic in High Speed Wide Area Networks

    Get PDF
    This paper presents a set of mechanisms for congestion control of data traffic in high speed wide area networks (HSWANs) along with preliminary performance results. The model of the network assumes reservation of resources based on average requirements. The mechanisms address (a) the different network time constants (short term and medium-term), (b) admission control that allows controlled variance of traffic as a function of medium-term congestion, and (c) prioritized scheduling which is based on a new fairness criterion. This latter criterion is perceived as the appropriate fairness measure for HSWANs. Preliminary performance studies show that the queue length statistics at switching nodes (mean, variance and max) are approximately proportional to the end-point \u27time window\u27 size. Further, * when network utilization approaches unity, the time window mechanism can protect the network from buffer overruns and excessive queueing delays, and * when network utilization level is smaller, the time window may be increased to allow a controlled amount of variance that attempts to simultaneously meet the performance goals of the end-user and that of the network. The prioritized scheduling algorithms proposed and studied in this paper are a generalization of the Virtual Clock algorithm [Zhang 1989]. The study here investigates * necessary and sufficient conditions for accomplishing desired fairness, * simulation and (limited analytical results for expected waiting times, * ability to protect against misbehaving users, and * relationship between end-point admission control (Time-Window) and internal scheduling (\u27Pulse\u27 and Virtual Clock) at the switch
    corecore