48,590 research outputs found

    Alternating plane graphs

    Get PDF
    A plane graph is called alternating if all adjacent vertices have different degrees, and all neighboring faces as well. Alternating plane graphs were introduced in 2008. This paper presents the previous research on alternating plane graphs. There are two smallest alternating plane graphs, having 17 vertices and 17 faces each. There is no alternating plane graph with 18 vertices, but alternating plane graphs exist for all cardinalities from 19 on. From a small set of initial building blocks, alternating plane graphs can be constructed for all large cardinalities. Many of the small alternating plane graphs have been found with extensive computer help. Theoretical results on alternating plane graphs are included where all degrees have to be from the set {3,4,5}. In addition, several classes of “weak alternating plane graphs” (with vertices of degree 2) are presented

    Resonance graphs of plane bipartite graphs as daisy cubes

    Full text link
    We characterize all plane bipartite graphs whose resonance graphs are daisy cubes and therefore generalize related results on resonance graphs of benzenoid graphs, catacondensed even ring systems, as well as 2-connected outerplane bipartite graphs. Firstly, we prove that if GG is a plane elementary bipartite graph other than K2K_2, then the resonance graph R(G)R(G) is a daisy cube if and only if the Fries number of GG equals the number of finite faces of GG, which in turn is equivalent to GG being homeomorphically peripheral color alternating. Next, we extend the above characterization from plane elementary bipartite graphs to all plane bipartite graphs and show that the resonance graph of a plane bipartite graph GG is a daisy cube if and only if GG is weakly elementary bipartite and every elementary component of GG other than K2K_2 is homeomorphically peripheral color alternating. Along the way, we prove that a Cartesian product graph is a daisy cube if and only if all of its nontrivial factors are daisy cubes

    Construction of harmonic diffeomorphisms and minimal graphs

    Get PDF
    We study complete minimal graphs in HxR, which take asymptotic boundary values plus and minus infinity on alternating sides of an ideal inscribed polygon Γ in H. We give necessary and sufficient conditions on the "lenghts" of the sides of the polygon (and all inscribed polygons in Γ) that ensure the existence of such a graph. We then apply this to construct entire minimal graphs in HxR that are conformally the complex plane C. The vertical projection of such a graph yields a harmonic diffeomorphism from C onto H, disproving a conjecture of Rick Schoen

    Unsigned state models for the Jones polynomial

    Full text link
    It is well a known and fundamental result that the Jones polynomial can be expressed as Potts and vertex partition functions of signed plane graphs. Here we consider constructions of the Jones polynomial as state models of unsigned graphs and show that the Jones polynomial of any link can be expressed as a vertex model of an unsigned embedded graph. In the process of deriving this result, we show that for every diagram of a link in the 3-sphere there exists a diagram of an alternating link in a thickened surface (and an alternating virtual link) with the same Kauffman bracket. We also recover two recent results in the literature relating the Jones and Bollobas-Riordan polynomials and show they arise from two different interpretations of the same embedded graph.Comment: Minor corrections. To appear in Annals of Combinatoric

    On Finite Order Invariants of Triple Points Free Plane Curves

    Full text link
    We describe some regular techniques of calculating finite degree invariants of triple points free smooth plane curves S1R2S^1 \to R^2. They are a direct analog of similar techniques for knot invariants and are based on the calculus of {\em triangular diagrams} and {\em connected hypergraphs} in the same way as the calculation of knot invariants is based on the study of chord diagrams and connected graphs. E.g., the simplest such invariant is of degree 4 and corresponds to the diagram consisting of two triangles with alternating vertices in a circle in the same way as the simplest knot invariant (of degree 2) corresponds to the 2-chord diagram \bigoplus. Also, following V.I.Arnold and other authors we consider invariants of {\em immersed} triple points free curves and describe similar techniques also for this problem, and, more generally, for the calculation of homology groups of the space of immersed plane curves without points of multiplicity k\ge k for any $k \ge 3.

    Decomposition theorem on matchable distributive lattices

    Full text link
    A distributive lattice structure M(G){\mathbf M}(G) has been established on the set of perfect matchings of a plane bipartite graph GG. We call a lattice {\em matchable distributive lattice} (simply MDL) if it is isomorphic to such a distributive lattice. It is natural to ask which lattices are MDLs. We show that if a plane bipartite graph GG is elementary, then M(G){\mathbf M}(G) is irreducible. Based on this result, a decomposition theorem on MDLs is obtained: a finite distributive lattice L\mathbf{L} is an MDL if and only if each factor in any cartesian product decomposition of L\mathbf{L} is an MDL. Two types of MDLs are presented: J(m×n)J(\mathbf{m}\times \mathbf{n}) and J(T)J(\mathbf{T}), where m×n\mathbf{m}\times \mathbf{n} denotes the cartesian product between mm-element chain and nn-element chain, and T\mathbf{T} is a poset implied by any orientation of a tree.Comment: 19 pages, 7 figure

    The Jones polynomial and graphs on surfaces

    Get PDF
    The Jones polynomial of an alternating link is a certain specialization of the Tutte polynomial of the (planar) checkerboard graph associated to an alternating projection of the link. The Bollobas-Riordan-Tutte polynomial generalizes the Tutte polynomial of planar graphs to graphs that are embedded in closed oriented surfaces of higher genus. In this paper we show that the Jones polynomial of any link can be obtained from the Bollobas-Riordan-Tutte polynomial of a certain oriented ribbon graph associated to a link projection. We give some applications of this approach.Comment: 19 pages, 9 figures, minor change
    corecore