938 research outputs found

    Alternating and empty alternating auxiliary stack automata

    Get PDF
    AbstractWe consider variants of alternating auxiliary stack automata and characterize their computational power when the number of alternations is bounded by a constant or unlimited. In this way we get new characterizations of NP, the polynomial hierarchy, PSpace, and bounded query classes like co-DP=NL〈NP[1]〉 and Θ2P=PNP[O(logn)], in a uniform framework

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k−2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k−2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    Visibly Linear Dynamic Logic

    Get PDF
    We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL) by temporal operators that are guarded by visibly pushdown languages over finite words. In VLDL one can, e.g., express that a function resets a variable to its original value after its execution, even in the presence of an unbounded number of intermediate recursive calls. We prove that VLDL describes exactly the ω\omega-visibly pushdown languages. Thus it is strictly more expressive than LTL and able to express recursive properties of programs with unbounded call stacks. The main technical contribution of this work is a translation of VLDL into ω\omega-visibly pushdown automata of exponential size via one-way alternating jumping automata. This translation yields exponential-time algorithms for satisfiability, validity, and model checking. We also show that visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time. We prove all these problems to be complete for their respective complexity classes.Comment: 25 Page

    New results on pushdown module checking with imperfect information

    Full text link
    Model checking of open pushdown systems (OPD) w.r.t. standard branching temporal logics (pushdown module checking or PMC) has been recently investigated in the literature, both in the context of environments with perfect and imperfect information about the system (in the last case, the environment has only a partial view of the system's control states and stack content). For standard CTL, PMC with imperfect information is known to be undecidable. If the stack content is assumed to be visible, then the problem is decidable and 2EXPTIME-complete (matching the complexity of PMC with perfect information against CTL). The decidability status of PMC with imperfect information against CTL restricted to the case where the depth of the stack content is visible is open. In this paper, we show that with this restriction, PMC with imperfect information against CTL remains undecidable. On the other hand, we individuate an interesting subclass of OPDS with visible stack content depth such that PMC with imperfect information against the existential fragment of CTL is decidable and in 2EXPTIME. Moreover, we show that the program complexity of PMC with imperfect information and visible stack content against CTL is 2EXPTIME-complete (hence, exponentially harder than the program complexity of PMC with perfect information, which is known to be EXPTIME-complete).Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Formats of Winning Strategies for Six Types of Pushdown Games

    Full text link
    The solution of parity games over pushdown graphs (Walukiewicz '96) was the first step towards an effective theory of infinite-state games. It was shown that winning strategies for pushdown games can be implemented again as pushdown automata. We continue this study and investigate the connection between game presentations and winning strategies in altogether six cases of game arenas, among them realtime pushdown systems, visibly pushdown systems, and counter systems. In four cases we show by a uniform proof method that we obtain strategies implementable by the same type of pushdown machine as given in the game arena. We prove that for the two remaining cases this correspondence fails. In the conclusion we address the question of an abstract criterion that explains the results

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable
    • …
    corecore