11,429 research outputs found

    Epsilon-Unfolding Orthogonal Polyhedra

    Get PDF
    An unfolding of a polyhedron is produced by cutting the surface and flattening to a single, connected, planar piece without overlap (except possibly at boundary points). It is a long unsolved problem to determine whether every polyhedron may be unfolded. Here we prove, via an algorithm, that every orthogonal polyhedron (one whose faces meet at right angles) of genus zero may be unfolded. Our cuts are not necessarily along edges of the polyhedron, but they are always parallel to polyhedron edges. For a polyhedron of n vertices, portions of the unfolding will be rectangular strips which, in the worst case, may need to be as thin as epsilon = 1/2^{Omega(n)}.Comment: 23 pages, 20 figures, 7 references. Revised version improves language and figures, updates references, and sharpens the conclusio

    Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm

    Get PDF
    We show that every orthogonal polyhedron homeomorphic to a sphere can be unfolded without overlap while using only polynomially many (orthogonal) cuts. By contrast, the best previous such result used exponentially many cuts. More precisely, given an orthogonal polyhedron with n vertices, the algorithm cuts the polyhedron only where it is met by the grid of coordinate planes passing through the vertices, together with Theta(n^2) additional coordinate planes between every two such grid planes.Comment: 15 pages, 10 figure

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    Higher Spin Alternating Sign Matrices

    Get PDF
    We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions. The case r=1 gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size n are the integer points of the r-th dilate of an integral convex polytope of dimension (n-1)^2 whose vertices are the standard alternating sign matrices of size n. It then follows that, for fixed n, these matrices are enumerated by an Ehrhart polynomial in r.Comment: 41 pages; v2: minor change

    Quantization and Fractional Quantization of Currents in Periodically Driven Stochastic Systems I: Average Currents

    Full text link
    This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.Comment: 22 pages, 7 figure

    Improved Bounds for Drawing Trees on Fixed Points with L-shaped Edges

    Full text link
    Let TT be an nn-node tree of maximum degree 4, and let PP be a set of nn points in the plane with no two points on the same horizontal or vertical line. It is an open question whether TT always has a planar drawing on PP such that each edge is drawn as an orthogonal path with one bend (an "L-shaped" edge). By giving new methods for drawing trees, we improve the bounds on the size of the point set PP for which such drawings are possible to: O(n1.55)O(n^{1.55}) for maximum degree 4 trees; O(n1.22)O(n^{1.22}) for maximum degree 3 (binary) trees; and O(n1.142)O(n^{1.142}) for perfect binary trees. Drawing ordered trees with L-shaped edges is harder---we give an example that cannot be done and a bound of O(nlogn)O(n \log n) points for L-shaped drawings of ordered caterpillars, which contrasts with the known linear bound for unordered caterpillars.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Formation of stripes and slabs near the ferromagnetic transition

    Full text link
    We consider Ising models in d=2 and d=3 dimensions with nearest neighbor ferromagnetic and long-range antiferromagnetic interactions, the latter decaying as (distance)^(-p), p>2d, at large distances. If the strength J of the ferromagnetic interaction is larger than a critical value J_c, then the ground state is homogeneous. It has been conjectured that when J is smaller than but close to J_c the ground state is periodic and striped, with stripes of constant width h=h(J), and h tends to infinity as J tends to J_c from below. (In d=3 stripes mean slabs, not columns.) Here we rigorously prove that, if we normalize the energy in such a way that the energy of the homogeneous state is zero, then the ratio e_0(J)/e_S(J) tends to 1 as J tends to J_c from below, with e_S(J) being the energy per site of the optimal periodic striped/slabbed state and e_0(J) the actual ground state energy per site of the system. Our proof comes with explicit bounds on the difference e_0(J)-e_S(J) at small but finite J_c-J, and also shows that in this parameter range the ground state is striped/slabbed in a certain sense: namely, if one looks at a randomly chosen window, of suitable size l (very large compared to the optimal stripe size h(J)), one finds a striped/slabbed state with high probability.Comment: 23 pages, 2 figures. We discovered that our analysis works in 3D as well as in 2D. We revised the paper and the title to reflect this. Our 2D stripes become 3D slabs. Some references adde
    corecore