153 research outputs found

    Single-image RGB Photometric Stereo With Spatially-varying Albedo

    Full text link
    We present a single-shot system to recover surface geometry of objects with spatially-varying albedos, from images captured under a calibrated RGB photometric stereo setup---with three light directions multiplexed across different color channels in the observed RGB image. Since the problem is ill-posed point-wise, we assume that the albedo map can be modeled as piece-wise constant with a restricted number of distinct albedo values. We show that under ideal conditions, the shape of a non-degenerate local constant albedo surface patch can theoretically be recovered exactly. Moreover, we present a practical and efficient algorithm that uses this model to robustly recover shape from real images. Our method first reasons about shape locally in a dense set of patches in the observed image, producing shape distributions for every patch. These local distributions are then combined to produce a single consistent surface normal map. We demonstrate the efficacy of the approach through experiments on both synthetic renderings as well as real captured images.Comment: 3DV 2016. Project page at http://www.ttic.edu/chakrabarti/rgbps

    Depth Super-Resolution Meets Uncalibrated Photometric Stereo

    Full text link
    A novel depth super-resolution approach for RGB-D sensors is presented. It disambiguates depth super-resolution through high-resolution photometric clues and, symmetrically, it disambiguates uncalibrated photometric stereo through low-resolution depth cues. To this end, an RGB-D sequence is acquired from the same viewing angle, while illuminating the scene from various uncalibrated directions. This sequence is handled by a variational framework which fits high-resolution shape and reflectance, as well as lighting, to both the low-resolution depth measurements and the high-resolution RGB ones. The key novelty consists in a new PDE-based photometric stereo regularizer which implicitly ensures surface regularity. This allows to carry out depth super-resolution in a purely data-driven manner, without the need for any ad-hoc prior or material calibration. Real-world experiments are carried out using an out-of-the-box RGB-D sensor and a hand-held LED light source.Comment: International Conference on Computer Vision (ICCV) Workshop, 201

    Inverse Rendering of Lambertian Surfaces Using Subspace Methods

    Full text link

    Unifying diffuse and specular reflections for the photometric stereo problem

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/WACV.2016.7477643After thirty years of researching, the photometric stereo technique for 3D shape recovery still does not provide reliable results if it is not constrained into very well-controlled scenarios. In fact, dealing with realistic materials and lightings yields a non-linear bidirectional reflectance distribution function which is primarily difficult to parametrize and then arduous to solve. With the aim to let the photometric stereo approach face more realistic assumptions, in this work we firstly introduce a unified irradiance equation describing both diffuse and specular reflection components in a general lighting setting. After that, we define a new equation we call unifying due to its basic features modeling the photometric stereo problem for heterogeneous materials. It is provided by making the ratio of irradiance equations holding both diffuse and specular reflections as well as non-linear light propagation features simultaneously. Performing a wide range of experiments, we show that this new approach overcomes state-of-the-art since it leads to a system of unifying equations which can be solved in a very robust manner using an efficient variational approach.Experimental setups were provided by Toulouse Tech Transfer, and this collaboration was funded by CNRS GdR 2286 (MIA)
    • …
    corecore