5,937 research outputs found

    Handling non-ignorable dropouts in longitudinal data: A conditional model based on a latent Markov heterogeneity structure

    Full text link
    We illustrate a class of conditional models for the analysis of longitudinal data suffering attrition in random effects models framework, where the subject-specific random effects are assumed to be discrete and to follow a time-dependent latent process. The latent process accounts for unobserved heterogeneity and correlation between individuals in a dynamic fashion, and for dependence between the observed process and the missing data mechanism. Of particular interest is the case where the missing mechanism is non-ignorable. To deal with the topic we introduce a conditional to dropout model. A shape change in the random effects distribution is considered by directly modeling the effect of the missing data process on the evolution of the latent structure. To estimate the resulting model, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. The proposal is illustrated via simulations and then applied on a dataset concerning skin cancers. Comparisons with other well-established methods are provided as well

    Collaborative sparse regression using spatially correlated supports - Application to hyperspectral unmixing

    Get PDF
    This paper presents a new Bayesian collaborative sparse regression method for linear unmixing of hyperspectral images. Our contribution is twofold; first, we propose a new Bayesian model for structured sparse regression in which the supports of the sparse abundance vectors are a priori spatially correlated across pixels (i.e., materials are spatially organised rather than randomly distributed at a pixel level). This prior information is encoded in the model through a truncated multivariate Ising Markov random field, which also takes into consideration the facts that pixels cannot be empty (i.e, there is at least one material present in each pixel), and that different materials may exhibit different degrees of spatial regularity. Secondly, we propose an advanced Markov chain Monte Carlo algorithm to estimate the posterior probabilities that materials are present or absent in each pixel, and, conditionally to the maximum marginal a posteriori configuration of the support, compute the MMSE estimates of the abundance vectors. A remarkable property of this algorithm is that it self-adjusts the values of the parameters of the Markov random field, thus relieving practitioners from setting regularisation parameters by cross-validation. The performance of the proposed methodology is finally demonstrated through a series of experiments with synthetic and real data and comparisons with other algorithms from the literature

    Computational Strategies in Lattice QCD

    Full text link
    Lectures given at the Summer School on "Modern perspectives in lattice QCD", Les Houches, August 3-28, 2009Comment: Latex source, 72 pages, 23 figures; v2: misprints corrected, minor text change

    Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs

    Full text link
    Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In this paper, we address probabilistic bisimulation to reduce the size of such an MDPs while preserving PCTL properties it satisfies. We discuss different interpretations of uncertainty in the models which are studied in the literature and that result in two different definitions of bisimulations. We give algorithms to compute the quotients of these bisimulations in time polynomial in the size of the model and exponential in the uncertain branching. Finally, we show by a case study that large models in practice can have small branching and that a substantial state space reduction can be achieved by our approach.Comment: In Proceedings SynCoP 2014, arXiv:1403.784
    corecore