4,508 research outputs found

    Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition

    Full text link
    Tesis por compendio[EN] The main objective of this thesis is the development of new sensors and actuators using Printed Electronics technology. For this, conductive, semiconductor and dielectric polymeric materials are used on flexible and/or elastic substrates. By means of suitable designs and application processes, it is possible to manufacture sensors capable of interacting with the environment. In this way, specific sensing functionalities can be incorporated into the substrates, such as textile fabrics. Additionally, it is necessary to include electronic systems capable of processing the data obtained, as well as its registration. In the development of these sensors and actuators, the physical properties of the different materials are precisely combined. For this, multilayer structures are designed where the properties of some materials interact with those of others. The result is a sensor capable of capturing physical variations of the environment, and convert them into signals that can be processed, and finally transformed into data. On the one hand, a tactile sensor printed on textile substrate for 2D gesture recognition was developed. This sensor consists of a matrix composed of small capacitive sensors based on a capacitor type structure. These sensors were designed in such a way that, if a finger or other object with capacitive properties, gets close enough, its behaviour varies, and it can be measured. The small sensors are arranged in this matrix as in a grid. Each sensor has a position that is determined by a row and a column. The capacity of each small sensor is periodically measured in order to assess whether significant variations have been produced. For this, it is necessary to convert the sensor capacity into a value that is subsequently digitally processed. On the other hand, to improve the effectiveness in the use of the developed 2D touch sensors, the way of incorporating an actuator system was studied. Thereby, the user receives feedback that the order or action was recognized. To achieve this, the capacitive sensor grid was complemented with an electroluminescent screen printed as well. The final prototype offers a solution that combines a 2D tactile sensor with an electroluminescent actuator on a printed textile substrate. Next, the development of a 3D gesture sensor was carried out using a combination of sensors also printed on textile substrate. In this type of 3D sensor, a signal is sent generating an electric field on the sensors. This is done using a transmission electrode located very close to them. The generated field is received by the reception sensors and converted to electrical signals. For this, the sensors are based on electrodes that act as receivers. If a person places their hands within the emission area, a disturbance of the electric field lines is created. This is due to the deviation of the lines to ground using the intrinsic conductivity of the human body. This disturbance affects the signals received by the electrodes. Variations captured by all electrodes are processed together and can determine the position and movement of the hand on the sensor surface. Finally, the development of an improved 3D gesture sensor was carried out. As in the previous development, the sensor allows contactless gesture detection, but increasing the detection range. In addition to printed electronic technology, two other textile manufacturing technologies were evaluated.[ES] La presente tesis doctoral tiene como objetivo fundamental el desarrollo de nuevos sensores y actuadores empleando la tecnología electrónica impresa, también conocida como Printed Electronics. Para ello, se emplean materiales poliméricos conductores, semiconductores y dieléctricos sobre sustratos flexibles y/o elásticos. Por medio de diseños y procesos de aplicación adecuados, es posible fabricar sensores capaces de interactuar con el entorno. De este modo, se pueden incorporar a los sustratos, como puedan ser tejidos textiles, funcionalidades específicas de medición del entorno y de respuesta ante cambios de este. Adicionalmente, es necesario incluir sistemas electrónicos, capaces de realizar el procesado de los datos obtenidos, así como de su registro. En el desarrollo de estos sensores y actuadores se combinan las propiedades físicas de los diferentes materiales de forma precisa. Para ello, se diseñan estructuras multicapa donde las propiedades de unos materiales interaccionan con las de los demás. El resultado es un sensor capaz de captar variaciones físicas del entorno, y convertirlas en señales que pueden ser procesadas y transformadas finalmente en datos. Por una parte, se ha desarrollado un sensor táctil impreso sobre sustrato textil para reconocimiento de gestos en 2D. Este sensor se compone de una matriz formada por pequeños sensores capacitivos basados en estructura de tipo condensador. Estos se han diseñado de forma que, si un dedo u otro objeto con propiedades capacitivas se aproxima suficientemente, su comportamiento varía, pudiendo ser medido. Los pequeños sensores están ordenados en dicha matriz como en una cuadrícula. Cada sensor tiene una posición que viene determinada por una fila y por una columna. Periódicamente se mide la capacidad de cada pequeño sensor con el fin de evaluar si ha sufrido variaciones significativas. Para ello es necesario convertir la capacidad del sensor en un valor que posteriormente es procesado digitalmente. Por otro lado, con el fin de mejorar la efectividad en el uso de los sensores táctiles 2D desarrollados, se ha estudiado el modo de incorporar un sistema actuador. De esta forma, el usuario recibe una retroalimentación indicando que la orden o acción ha sido reconocida. Para ello, se ha complementado la matriz de sensores capacitivos con una pantalla electroluminiscente también impresa. El resultado final ofrece una solución que combina un sensor táctil 2D con un actuador electroluminiscente realizado mediante impresión electrónica sobre sustrato textil. Posteriormente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D empleando una combinación de sensores impresos también sobre sustrato textil. En este tipo de sensor 3D, se envía una señal que genera un campo eléctrico sobre los sensores impresos. Esto se lleva a cabo mediante un electrodo de transmisión situado muy cerca de ellos. El campo generado es recibido por los sensores y convertido a señales eléctricas. Para ello, los sensores se basan en electrodos que actúan de receptores. Si una persona coloca su mano dentro del área de emisión, se crea una perturbación de las líneas de los campos eléctricos. Esto es debido a la desviación de las líneas de campo a tierra utilizando la conductividad intrínseca del cuerpo humano. Esta perturbación cambia/afecta a las señales recibidas por los electrodos. Las variaciones captadas por todos los electrodos son procesadas de forma conjunta pudiendo determinar la posición y el movimiento de la mano sobre la superficie del sensor. Finalmente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D mejorado. Al igual que el desarrollo anterior, permite la detección de gestos sin necesidad de contacto, pero incrementando la distancia de alcance. Además de la tecnología de impresión electrónica, se ha evaluado el empleo de otras dos tecnologías de fabricación textil.[CA] La present tesi doctoral té com a objectiu fonamental el desenvolupament de nous sensors i actuadors fent servir la tecnologia de electrònica impresa, també coneguda com Printed Electronics. Es va fer us de materials polimèrics conductors, semiconductors i dielèctrics sobre substrats flexibles i/o elàstics. Per mitjà de dissenys i processos d'aplicació adequats, és possible fabricar sensors capaços d'interactuar amb l'entorn. D'aquesta manera, es poden incorporar als substrats, com ara teixits tèxtils, funcionalitats específiques de mesurament de l'entorn i de resposta davant canvis d'aquest. Addicionalment, és necessari incloure sistemes electrònics, capaços de realitzar el processament de les dades obtingudes, així com del seu registre. En el desenvolupament d'aquests sensors i actuadors es combinen les propietats físiques dels diferents materials de forma precisa. Cal dissenyar estructures multicapa on les propietats d'uns materials interaccionen amb les de la resta. manera El resultat es un sensor capaç de captar variacions físiques de l'entorn, i convertirles en senyals que poden ser processades i convertides en dades. D'una banda, s'ha desenvolupat un sensor tàctil imprès sobre substrat tèxtil per a reconeixement de gestos en 2D. Aquest sensor es compon d'una matriu formada amb petits sensors capacitius basats en una estructura de tipus condensador. Aquests s'han dissenyat de manera que, si un dit o un altre objecte amb propietats capacitives s'aproxima prou, el seu comportament varia, podent ser mesurat. Els petits sensors estan ordenats en aquesta matriu com en una quadrícula. Cada sensor té una posició que ve determinada per una fila i per una columna. Periòdicament es mesura la capacitat de cada petit sensor per tal d'avaluar si ha sofert variacions significatives. Per a això cal convertir la capacitat del sensor a un valor que posteriorment és processat digitalment. D'altra banda, per tal de millorar l'efectivitat en l'ús dels sensors tàctils 2D desenvolupats, s'ha estudiat la manera d'incorporar un sistema actuador. D'aquesta forma, l'usuari rep una retroalimentació indicant que l'ordre o acció ha estat reconeguda. Per a això, s'ha complementat la matriu de sensors capacitius amb una pantalla electroluminescent també impresa. El resultat final ofereix una solució que combina un sensor tàctil 2D amb un actuador electroluminescent realitzat mitjançant impressió electrònica sobre substrat tèxtil. Posteriorment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D emprant una combinació d'un mínim de sensors impresos també sobre substrat tèxtil. En aquest tipus de sensor 3D, s'envia un senyal que genera un camp elèctric sobre els sensors impresos. Això es porta a terme mitjançant un elèctrode de transmissió situat molt a proper a ells. El camp generat és rebut pels sensors i convertit a senyals elèctrics. Per això, els sensors es basen en elèctrodes que actuen de receptors. Si una persona col·loca la seva mà dins de l'àrea d'emissió, es crea una pertorbació de les línies dels camps elèctrics. Això és a causa de la desviació de les línies de camp a terra utilitzant la conductivitat intrínseca de el cos humà. Aquesta pertorbació afecta als senyals rebudes pels elèctrodes. Les variacions captades per tots els elèctrodes són processades de manera conjunta per determinar la posició i el moviment de la mà sobre la superfície del sensor. Finalment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D millorat. A l'igual que el desenvolupament anterior, permet la detecció de gestos sense necessitat de contacte, però incrementant la distància d'abast. A més a més de la tecnologia d'impressió electrònica, s'ha avaluat emprar altres dues tecnologies de fabricació tèxtil.Ferri Pascual, J. (2020). Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153075TESISCompendi

    Comparison of E-Textile Techniques and Materials for 3D Gesture Sensor with Boosted Electrode Design

    Full text link
    [EN] There is an interest in new wearable solutions that can be directly worn on the curved human body or integrated into daily objects. Textiles offer properties that are suitable to be used as holders for electronics or sensors components. Many sensing technologies have been explored considering textiles substrates in combination with conductive materials in the last years. In this work, a novel solution of a gesture recognition touchless sensor is implemented with satisfactory results. Moreover, three manufacturing techniques have been considered as alternatives: screen-printing with conductive ink, embroidery with conductive thread and thermosealing with conductive fabric. The main critical parameters have been analyzed for each prototype including the sensitivity of the sensor, which is an important and specific parameter of this type of sensor. In addition, user validation has been performed, testing several gestures with different subjects. During the tests carried out, flick gestures obtained detection rates from 79% to 89% on average. Finally, in order to evaluate the stability and strength of the solutions, some tests have been performed to assess environmental variations and washability deteriorations. The obtained results are satisfactory regarding temperature and humidity variations. The washability tests revealed that, except for the screen-printing prototype, the sensors can be washed with minimum degradation.This work was supported by the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER). The work presented is also funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and cofounded by ERDF funding from the EU. Application No.: IMAMCI/2020/1Ferri Pascual, J.; Llinares Llopis, R.; Martinez, G.; Lidon-Roger, JV.; Garcia-Breijo, E. (2020). Comparison of E-Textile Techniques and Materials for 3D Gesture Sensor with Boosted Electrode Design. Sensors. 20(8):1-19. https://doi.org/10.3390/s20082369S11920

    New developments in prosthetic arm systems

    Get PDF
    Absence of an upper limb leads to severe impairments in everyday life, which can further influence the social and mental state. For these reasons, early developments in cosmetic and body-driven prostheses date some centuries ago, and they have been evolving ever since. Following the end of the Second World War, rapid developments in technology resulted in powered myoelectric hand prosthetics. In the years to come, these devices were common on the market, though they still suffered high user abandonment rates. The reasons for rejection were trifold - insufficient functionality of the hardware, fragile design, and cumbersome control. In the last decade, both academia and industry have reached major improvements concerning technical features of upper limb prosthetics and methods for their interfacing and control. Advanced robotic hands are offered by several vendors and research groups, with a variety of active and passive wrist options that can be articulated across several degrees of freedom. Nowadays, elbow joint designs include active solutions with different weight and power options. Control features are getting progressively more sophisticated, offering options for multiple sensor integration and multi-joint articulation. Latest developments in socket designs are capable of facilitating implantable and multiple surface electromyography sensors in both traditional and osseointegration-based systems. Novel surgical techniques in combination with modern, sophisticated hardware are enabling restoration of dexterous upper limb functionality. This article is aimed at reviewing the latest state of the upper limb prosthetic market, offering insights on the accompanying technologies and techniques. We also examine the capabilities and features of some of academia’s flagship solutions and methods

    Self-Powered Gesture Recognition with Ambient Light

    Get PDF
    We present a self-powered module for gesture recognition that utilizes small, low-cost photodiodes for both energy harvesting and gesture sensing. Operating in the photovoltaic mode, photodiodes harvest energy from ambient light. In the meantime, the instantaneously harvested power from individual photodiodes is monitored and exploited as a clue for sensing finger gestures in proximity. Harvested power from all photodiodes are aggregated to drive the whole gesture-recognition module including a micro-controller running the recognition algorithm. We design robust, lightweight algorithm to recognize finger gestures in the presence of ambient light fluctuations. We fabricate two prototypes to facilitate user’s interaction with smart glasses and smart watches. Results show 99.7%/98.3% overall precision/recall in recognizing five gestures on glasses and 99.2%/97.5% precision/recall in recognizing seven gestures on the watch. The system consumes 34.6 µW/74.3 µW for the glasses/watch and thus can be powered by the energy harvested from ambient light. We also test system’s robustness under various light intensities, light directions, and ambient light fluctuations. The system maintains high recognition accuracy (\u3e 96%) in all tested settings

    AVSS 2007: IEEE International Conference onAdvanced Video and Signal based Surveillance, London, UK, September 2007:Conference participation

    Get PDF

    Biomedical Sensing and Imaging

    Get PDF
    This book mainly deals with recent advances in biomedical sensing and imaging. More recently, wearable/smart biosensors and devices, which facilitate diagnostics in a non-clinical setting, have become a hot topic. Combined with machine learning and artificial intelligence, they could revolutionize the biomedical diagnostic field. The aim of this book is to provide a research forum in biomedical sensing and imaging and extend the scientific frontier of this very important and significant biomedical endeavor

    Ferroelectrets: from material science to energy harvesting and sensor applications

    Get PDF
    The purpose of this thesis is to develop innovative ferroelectrets that can be used in energy harvesting devices as well as mechanical sensors. In the first stage, the focus lies on the application of ferroelectrets as energy harvesters. The inability to control the environment where the energy harvesters will be applied, requires the use of materials that can be utilized in harsh environment such as high temperature or humidity. Therefore, new ferroelectrets based on polymers with excellent electret properties, such as fluoroethylene propylene (FEP) are developed. Two types of ferroelectrets are considered, one optimized for the longitidunal piezoelectric effect and the other one optimized for the transverse piezoelectric effect in these materials. Hereby, new void structures are achieved through thermally fusing such films so that parallel tunnels (parallel-tunnel ferroelectrets) are formed between them, or by fusing round-section FEP tubes together so that they form a band or membrane. The FEP tube configuration is optimized based on a finite element model showing that implementing a single tube structure (25 mm × 1.5 mm) as the energy harvester exhibits the largest output power. By building the energy harvester and modeling it analytically, it is demonstrated that the generated power is highly dependent on parameters such as wall thickness, load resistance, and seismic mass. Utilizing a seismic mass of 80 g at resonance frequencies around 80 Hz and an input acceleration of 1 g (9.81 m s−2), output powers up to 300 μW are reached for a transducer with 25 μm thick walls. The parallel-tunnel ferroelectrets (40 mm × 10 mm) are characterized and used in an energy harvester device based on the transverse piezoelectric effect. The energy harvesting device is an air-spaced cantilever arrangement produced by additive manufacturing technique (3D-printing). The device is tested by exposing it to sinusoidal vibrations with an acceleration a, generated by a shaker. By placing the ferroelectret at a defined distance from the neutral axis of the cantilever beam and using a proper pre-stress of the ferroelectret, an output power exceeding 1000 μW at the resonance frequency of approximately 35 Hz is reached. This demonstrates a significant improvement of air-spaced vibrational energy harvesting with ferroelectrets and greatly exceeds previous performance data for ferroelectret energy harvester of maximal 230 μW. In the second stage of the dissertation, the focus is shifted to develop ferroelectrets for chosen applications such as force myography, ultrasonic transducer and smart insole. Hereby, new arrangements and manufacturing methods are investigated to build the ferroelectret sensors. Furthermore, and following the recent requirements of eco-friendlier sensors, ferroelectrets based on polylactic acid (PLA) are investigated. PLA is a biodegradable and bioabsorbable material derived from renewable plant sources, such as corn or potato starch, tapioca roots, and sugar canes. This work relays a promising new technique in the fabrication of ferroelectrets. The novel structure is achieved through sandwiching a 3D-printed grid of periodically spaced thermoplastic polyurethane (TPU) spacers and air channels between two 12.5 μm-thick FEP films. Due to the ultra-soft TPU sections, very high quasistatic (22.000 pC N−1) and dynamic (7500 pC N−1) d33-coefficients are achieved. The isothermal stability of the d33-coefficients showed a strong dependence on poling temperature. Furthermore, the thermally stimulated discharge currents revealed well-known instability of positive charge carriers in FEP, thereby offering the possibility of stabilization by high-temperature poling. A similar approach is taken by replacing the environmentally harmful FEP by PLA. Large piezoelectric d33-coefficients of up to 2850 pC N−1 are recorded directly after charging and stabilized at about 1500 pC N−1 after approximately 50 days under ambient environmental conditions. These ferroelectrets when used for force myography to detect the slightest muscle movement when moving a finger, resulted in signal shapes and magnitudes that can be clearly distinguished from each other using simple machine learning algorithms known as Support Vector Machine (SVM) with a classification accuracy of 89.5%. Following the new manufacturing route using 3D-printing, an insole is printed using pure polypropylene filament and consists of eight independent sensors, each with a piezoelectric d33 coefficient of approximately 2000 pC N−1. The active part of the insole is protected using a 3D-printed PLA cover that features eight defined embossments on the bottom part, which focus the force on the sensors and act as overload protection against excessive stress. In addition to determining the gait pattern, an accelerometer is implemented to measure kinematic parameters and validate the sensor output signals. The combination of the high sensitivity of the sensors and the kinematic movement of the foot, opens new perspectives regarding diagnosis possibilities through gait analysis. By 3D-printing a PLA backplate and using it in combination with a bulk PLA film, a new possibility to build ultrasonic transducers is presented. The ultrasonic transducer consists of three main components all made from PLA: the film presenting the vibrating plate, the printed backplate with well-defined groves, and the printed holder. The PLA film and the printed backplate build together the ferroelectret with artificial air voids. The printed holder clamps the film on the backplate and fixes the ferroelectret together. The resulting sound pressure is measured with a calibrated microphone (Type 4138, Bruel & Kjaer) at a distance of 30 cm. The biodegradable ultrasonic transducer exhibits a large bandwidth of approximately 45 kHz and fractional bandwidth of 70%. The resulting sound pressure at the resonance frequency can be increased from 98 dB up to 106 dB for driving voltages from 30 to 70 V. respectively. The obtained theoretical and experimental results are an excellent base for further optimizing ferroelectrets to be accepted in the field of energy harvesting and mechanical sensors, where flexibility and high sensitivity are mandatory for the applications

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology

    Full text link
    [EN] Research has developed various solutions in order for computers to recognize hand gestures in the context of human machine interface (HMI). The design of a successful hand gesture recognition system must address functionality and usability. The gesture recognition market has evolved from touchpads to touchless sensors, which do not need direct contact. Their application in textiles ranges from the field of medical environments to smart home applications and the automotive industry. In this paper, a textile capacitive touchless sensor has been developed by using screen-printing technology. Two different designs were developed to obtain the best configuration, obtaining good results in both cases. Finally, as a real application, a complete solution of the sensor with wireless communications is presented to be used as an interface for a mobile phone.The work presented is funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and cofounded by ERDF funding from the EU. Application No.: IMAMCI/2019/1. This work was also supported by the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER).Ferri Pascual, J.; Llinares Llopis, R.; Moreno Canton, J.; Ibáñez Civera, FJ.; Garcia-Breijo, E. (2019). A Wearable Textile 3D Gesture Recognition Sensor Based on Screen-Printing Technology. Sensors. 19(23):1-32. https://doi.org/10.3390/s19235068S1321923Chakraborty, B. K., Sarma, D., Bhuyan, M. K., & MacDorman, K. F. (2017). Review of constraints on vision‐based gesture recognition for human–computer interaction. IET Computer Vision, 12(1), 3-15. doi:10.1049/iet-cvi.2017.0052Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24Rautaray, S. S. (2012). Real Time Hand Gesture Recognition System for Dynamic Applications. International Journal of UbiComp, 3(1), 21-31. doi:10.5121/iju.2012.3103Karim, R. A., Zakaria, N. F., Zulkifley, M. A., Mustafa, M. M., Sagap, I., & Md Latar, N. H. (2013). Telepointer technology in telemedicine : a review. BioMedical Engineering OnLine, 12(1), 21. doi:10.1186/1475-925x-12-21Santos, L., Carbonaro, N., Tognetti, A., González, J., de la Fuente, E., Fraile, J., & Pérez-Turiel, J. (2018). Dynamic Gesture Recognition Using a Smart Glove in Hand-Assisted Laparoscopic Surgery. Technologies, 6(1), 8. doi:10.3390/technologies6010008Singh, A., Buonassisi, J., & Jain, S. (2014). Autonomous Multiple Gesture Recognition System for Disabled People. International Journal of Image, Graphics and Signal Processing, 6(2), 39-45. doi:10.5815/ijigsp.2014.02.05Ohn-Bar, E., & Trivedi, M. M. (2014). Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2368-2377. doi:10.1109/tits.2014.2337331Khan, S. A., & Engelbrecht, A. P. (2010). A fuzzy particle swarm optimization algorithm for computer communication network topology design. Applied Intelligence, 36(1), 161-177. doi:10.1007/s10489-010-0251-2Abraham, L., Urru, A., Normani, N., Wilk, M., Walsh, M., & O’Flynn, B. (2018). Hand Tracking and Gesture Recognition Using Lensless Smart Sensors. Sensors, 18(9), 2834. doi:10.3390/s18092834Zeng, Q., Kuang, Z., Wu, S., & Yang, J. (2019). A Method of Ultrasonic Finger Gesture Recognition Based on the Micro-Doppler Effect. Applied Sciences, 9(11), 2314. doi:10.3390/app9112314Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson, E., … Poupyrev, I. (2016). Soli. ACM Transactions on Graphics, 35(4), 1-19. doi:10.1145/2897824.2925953Sang, Y., Shi, L., & Liu, Y. (2018). Micro Hand Gesture Recognition System Using Ultrasonic Active Sensing. IEEE Access, 6, 49339-49347. doi:10.1109/access.2018.2868268Ferri, J., Lidón-Roger, J., Moreno, J., Martinez, G., & Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials, 10(12), 1450. doi:10.3390/ma10121450Nunes, J., Castro, N., Gonçalves, S., Pereira, N., Correia, V., & Lanceros-Mendez, S. (2017). Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications. Sensors, 17(12), 2786. doi:10.3390/s17122786Ferri, J., Perez Fuster, C., Llinares Llopis, R., Moreno, J., & Garcia‑Breijo, E. (2018). Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Screen-Printing Technology on Textile Substrate. Sensors, 18(10), 3313. doi:10.3390/s18103313Cronin, S., & Doherty, G. (2018). Touchless computer interfaces in hospitals: A review. Health Informatics Journal, 25(4), 1325-1342. doi:10.1177/1460458217748342Haslinger, L., Wasserthal, S., & Zagar, B. G. (2017). P3.1 - A capacitive measurement system for gesture regocnition. Proceedings Sensor 2017. doi:10.5162/sensor2017/p3.1Cherenack, K., & van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9), 091301. doi:10.1063/1.474272
    corecore