653 research outputs found

    X-ray CT Image Reconstruction on Highly-Parallel Architectures.

    Full text link
    Model-based image reconstruction (MBIR) methods for X-ray CT use accurate models of the CT acquisition process, the statistics of the noisy measurements, and noise-reducing regularization to produce potentially higher quality images than conventional methods even at reduced X-ray doses. They do this by minimizing a statistically motivated high-dimensional cost function; the high computational cost of numerically minimizing this function has prevented MBIR methods from reaching ubiquity in the clinic. Modern highly-parallel hardware like graphics processing units (GPUs) may offer the computational resources to solve these reconstruction problems quickly, but simply "translating" existing algorithms designed for conventional processors to the GPU may not fully exploit the hardware's capabilities. This thesis proposes GPU-specialized image denoising and image reconstruction algorithms. The proposed image denoising algorithm uses group coordinate descent with carefully structured groups. The algorithm converges very rapidly: in one experiment, it denoises a 65 megapixel image in about 1.5 seconds, while the popular Chambolle-Pock primal-dual algorithm running on the same hardware takes over a minute to reach the same level of accuracy. For X-ray CT reconstruction, this thesis uses duality and group coordinate ascent to propose an alternative to the popular ordered subsets (OS) method. Similar to OS, the proposed method can use a subset of the data to update the image. Unlike OS, the proposed method is convergent. In one helical CT reconstruction experiment, an implementation of the proposed algorithm using one GPU converges more quickly than a state-of-the-art algorithm converges using four GPUs. Using four GPUs, the proposed algorithm reaches near convergence of a wide-cone axial reconstruction problem with over 220 million voxels in only 11 minutes.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113551/1/mcgaffin_1.pd

    Multi-GPU Acceleration of Iterative X-ray CT Image Reconstruction

    Get PDF
    X-ray computed tomography is a widely used medical imaging modality for screening and diagnosing diseases and for image-guided radiation therapy treatment planning. Statistical iterative reconstruction (SIR) algorithms have the potential to significantly reduce image artifacts by minimizing a cost function that models the physics and statistics of the data acquisition process in X-ray CT. SIR algorithms have superior performance compared to traditional analytical reconstructions for a wide range of applications including nonstandard geometries arising from irregular sampling, limited angular range, missing data, and low-dose CT. The main hurdle for the widespread adoption of SIR algorithms in multislice X-ray CT reconstruction problems is their slow convergence rate and associated computational time. We seek to design and develop fast parallel SIR algorithms for clinical X-ray CT scanners. Each of the following approaches is implemented on real clinical helical CT data acquired from a Siemens Sensation 16 scanner and compared to the straightforward implementation of the Alternating Minimization (AM) algorithm of O’Sullivan and Benac [1]. We parallelize the computationally expensive projection and backprojection operations by exploiting the massively parallel hardware architecture of 3 NVIDIA TITAN X Graphical Processing Unit (GPU) devices with CUDA programming tools and achieve an average speedup of 72X over a straightforward CPU implementation. We implement a multi-GPU based voxel-driven multislice analytical reconstruction algorithm called Feldkamp-Davis-Kress (FDK) [2] and achieve an average overall speedup of 1382X over the baseline CPU implementation by using 3 TITAN X GPUs. Moreover, we propose a novel adaptive surrogate-function based optimization scheme for the AM algorithm, resulting in more aggressive update steps in every iteration. On average, we double the convergence rate of our baseline AM algorithm and also improve image quality by using the adaptive surrogate function. We extend the multi-GPU and adaptive surrogate-function based acceleration techniques to dual-energy reconstruction problems as well. Furthermore, we design and develop a GPU-based deep Convolutional Neural Network (CNN) to denoise simulated low-dose X-ray CT images. Our experiments show significant improvements in the image quality with our proposed deep CNN-based algorithm against some widely used denoising techniques including Block Matching 3-D (BM3D) and Weighted Nuclear Norm Minimization (WNNM). Overall, we have developed novel fast, parallel, computationally efficient methods to perform multislice statistical reconstruction and image-based denoising on clinically-sized datasets

    Distributed optimization for nonrigid nano-tomography

    Full text link
    Resolution level and reconstruction quality in nano-computed tomography (nano-CT) are in part limited by the stability of microscopes, because the magnitude of mechanical vibrations during scanning becomes comparable to the imaging resolution, and the ability of the samples to resist beam damage during data acquisition. In such cases, there is no incentive in recovering the sample state at different time steps like in time-resolved reconstruction methods, but instead the goal is to retrieve a single reconstruction at the highest possible spatial resolution and without any imaging artifacts. Here we propose a joint solver for imaging samples at the nanoscale with projection alignment, unwarping and regularization. Projection data consistency is regulated by dense optical flow estimated by Farneback's algorithm, leading to sharp sample reconstructions with less artifacts. Synthetic data tests show robustness of the method to Poisson and low-frequency background noise. Applicability of the method is demonstrated on two large-scale nano-imaging experimental data sets.Comment: Manuscript and supplementary materia
    • …
    corecore