133 research outputs found

    Image Mapping and Object Removal Using ADM in Image Inpainting: Review

    Get PDF
    Image inpainting is a technology for restoring the damaged parts of an image by referring to the information from the undamaged parts to make the restored image look “complete”, “continuous” and “natural”. Inpainting traditionally has been done by professional restorers. For instance, in the valuable painting such as in the museum world would be carried out by a skilled art conservator or art restorer. But this process is manual so it is time consuming. Digital Image Inpainting tries to imitate this process and perform the Inpainting automatically. The aim of this work is to develop an automatic system that can remove unwanted objects from the image and restore the image in undetectable way. Among various image inpainting algorithms Alternating Direction Method (ADM) is used for image restoration. ADM works well for solving inverse problem. In this paper, various applications of ADM method for image restoration are discussed. DOI: 10.17762/ijritcc2321-8169.15030

    Dictionary optimization for representing sparse signals using Rank-One Atom Decomposition (ROAD)

    Get PDF
    Dictionary learning has attracted growing research interest during recent years. As it is a bilinear inverse problem, one typical way to address this problem is to iteratively alternate between two stages: sparse coding and dictionary update. The general principle of the alternating approach is to fix one variable and optimize the other one. Unfortunately, for the alternating method, an ill-conditioned dictionary in the training process may not only introduce numerical instability but also trap the overall training process towards a singular point. Moreover, it leads to difficulty in analyzing its convergence, and few dictionary learning algorithms have been proved to have global convergence. For the other bilinear inverse problems, such as short-and-sparse deconvolution (SaSD) and convolutional dictionary learning (CDL), the alternating method is still a popular choice. As these bilinear inverse problems are also ill-posed and complicated, they are tricky to handle. Additional inner iterative methods are usually required for both of the updating stages, which aggravates the difficulty of analyzing the convergence of the whole learning process. It is also challenging to determine the number of iterations for each stage, as over-tuning any stage will trap the whole process into a local minimum that is far from the ground truth. To mitigate the issues resulting from the alternating method, this thesis proposes a novel algorithm termed rank-one atom decomposition (ROAD), which intends to recast a bilinear inverse problem into an optimization problem with respect to a single variable, that is, a set of rank-one matrices. Therefore, the resulting algorithm is one stage, which minimizes the sparsity of the coefficients while keeping the data consistency constraint throughout the whole learning process. Inspired by recent advances in applying the alternating direction method of multipliers (ADMM) to nonconvex nonsmooth problems, an ADMM solver is adopted to address ROAD problems, and a lower bound of the penalty parameter is derived to guarantee a convergence in the augmented Lagrangian despite nonconvexity of the optimization formulation. Compared to two-stage dictionary learning methods, ROAD simplifies the learning process, eases the difficulty of analyzing convergence, and avoids the singular point issue. From a practical point of view, ROAD reduces the number of tuning parameters required in other benchmark algorithms. Numerical tests reveal that ROAD outperforms other benchmark algorithms in both synthetic data tests and single image super-resolution applications. In addition to dictionary learning, the ROAD formulation can also be extended to solve the SaSD and CDL problems. ROAD can still be employed to recast these problems into a one-variable optimization problem. Numerical tests illustrate that ROAD has better performance in estimating convolutional kernels compared to the latest SaSD and CDL algorithms.Open Acces

    Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Get PDF
    Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.Comment: 31 pages, 47 figure

    Multi-wavelength imaging algorithm for optical interferometry

    Get PDF
    International audienceOptical interferometers provide multiple wavelength measurements. In order to fully exploit the spectral and spatial resolution of these instruments, new algorithms for image reconstruction have to be developed. Early attempts to deal with multi-chromatic interferometric data have consisted in recovering a gray image of the object or independent monochromatic images in some spectral bandwidths. The main challenge is now to recover the full 3-D (spatio-spectral) brightness distribution of the astronomical target given all the available data. We describe a new approach to implement multi-wavelength image reconstruction in the case where the observed scene is a collection of point-like sources. We show the gain in image quality (both spatially and spectrally) achieved by globally taking into account all the data instead of dealing with independent spectral slices. This is achieved thanks to a regularization which favors spatially sparsity and spectral grouping of the sources. Since the objective function is not differentiable, we had to develop a specialized optimization algorithm which also takes into account the non-negativity of the brightness distribution

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Exploiting spatial sparsity for multi-wavelength imaging in optical interferometry

    Full text link
    Optical interferometers provide multiple wavelength measurements. In order to fully exploit the spectral and spatial resolution of these instruments, new algorithms for image reconstruction have to be developed. Early attempts to deal with multi-chromatic interferometric data have consisted in recovering a gray image of the object or independent monochromatic images in some spectral bandwidths. The main challenge is now to recover the full 3-D (spatio-spectral) brightness distribution of the astronomical target given all the available data. We describe a new approach to implement multi-wavelength image reconstruction in the case where the observed scene is a collection of point-like sources. We show the gain in image quality (both spatially and spectrally) achieved by globally taking into account all the data instead of dealing with independent spectral slices. This is achieved thanks to a regularization which favors spatial sparsity and spectral grouping of the sources. Since the objective function is not differentiable, we had to develop a specialized optimization algorithm which also accounts for non-negativity of the brightness distribution.Comment: This version has been accepted for publication in J. Opt. Soc. Am.

    Bayesian image restoration and bacteria detection in optical endomicroscopy

    Get PDF
    Optical microscopy systems can be used to obtain high-resolution microscopic images of tissue cultures and ex vivo tissue samples. This imaging technique can be translated for in vivo, in situ applications by using optical fibres and miniature optics. Fibred optical endomicroscopy (OEM) can enable optical biopsy in organs inaccessible by any other imaging systems, and hence can provide rapid and accurate diagnosis in a short time. The raw data the system produce is difficult to interpret as it is modulated by a fibre bundle pattern, producing what is called the “honeycomb effect”. Moreover, the data is further degraded due to the fibre core cross coupling problem. On the other hand, there is an unmet clinical need for automatic tools that can help the clinicians to detect fluorescently labelled bacteria in distal lung images. The aim of this thesis is to develop advanced image processing algorithms that can address the above mentioned problems. First, we provide a statistical model for the fibre core cross coupling problem and the sparse sampling by imaging fibre bundles (honeycomb artefact), which are formulated here as a restoration problem for the first time in the literature. We then introduce a non-linear interpolation method, based on Gaussian processes regression, in order to recover an interpretable scene from the deconvolved data. Second, we develop two bacteria detection algorithms, each of which provides different characteristics. The first approach considers joint formulation to the sparse coding and anomaly detection problems. The anomalies here are considered as candidate bacteria, which are annotated with the help of a trained clinician. Although this approach provides good detection performance and outperforms existing methods in the literature, the user has to carefully tune some crucial model parameters. Hence, we propose a more adaptive approach, for which a Bayesian framework is adopted. This approach not only outperforms the proposed supervised approach and existing methods in the literature but also provides computation time that competes with optimization-based methods
    corecore