43,369 research outputs found

    Unsupervised Domain Adaptation using Regularized Hyper-graph Matching

    Full text link
    Domain adaptation (DA) addresses the real-world image classification problem of discrepancy between training (source) and testing (target) data distributions. We propose an unsupervised DA method that considers the presence of only unlabelled data in the target domain. Our approach centers on finding matches between samples of the source and target domains. The matches are obtained by treating the source and target domains as hyper-graphs and carrying out a class-regularized hyper-graph matching using first-, second- and third-order similarities between the graphs. We have also developed a computationally efficient algorithm by initially selecting a subset of the samples to construct a graph and then developing a customized optimization routine for graph-matching based on Conditional Gradient and Alternating Direction Multiplier Method. This allows the proposed method to be used widely. We also performed a set of experiments on standard object recognition datasets to validate the effectiveness of our framework over state-of-the-art approaches.Comment: Final version appeared in IEEE International Conference on Image Processing 201

    A Decomposition Theorem for Maximum Weight Bipartite Matchings

    Get PDF
    Let G be a bipartite graph with positive integer weights on the edges and without isolated nodes. Let n, N and W be the node count, the largest edge weight and the total weight of G. Let k(x,y) be log(x)/log(x^2/y). We present a new decomposition theorem for maximum weight bipartite matchings and use it to design an O(sqrt(n)W/k(n,W/N))-time algorithm for computing a maximum weight matching of G. This algorithm bridges a long-standing gap between the best known time complexity of computing a maximum weight matching and that of computing a maximum cardinality matching. Given G and a maximum weight matching of G, we can further compute the weight of a maximum weight matching of G-{u} for all nodes u in O(W) time.Comment: The journal version will appear in SIAM Journal on Computing. The conference version appeared in ESA 199

    Belief-Propagation for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs with Integer Solutions

    Full text link
    We consider the general problem of finding the minimum weight \bm-matching on arbitrary graphs. We prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions, then the belief propagation (BP) algorithm converges to the correct solution. We also show that when the LP relaxation has a fractional solution then the BP algorithm can be used to solve the LP relaxation. Our proof is based on the notion of graph covers and extends the analysis of (Bayati-Shah-Sharma 2005 and Huang-Jebara 2007}. These results are notable in the following regards: (1) It is one of a very small number of proofs showing correctness of BP without any constraint on the graph structure. (2) Variants of the proof work for both synchronous and asynchronous BP; it is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial optimization problem.Comment: 28 pages, 2 figures. Submitted to SIAM journal on Discrete Mathematics on March 19, 2009; accepted for publication (in revised form) August 30, 2010; published electronically July 1, 201
    • …
    corecore