360 research outputs found

    Sensor Data Fusion for Body State Estimation in a Hexapod Robot With Dynamical Gaits

    Get PDF
    We report on a hybrid 12-dimensional full body state estimator for a hexapod robot executing a jogging gait in steady state on level terrain with regularly alternating ground contact and aerial phases of motion. We use a repeating sequence of continuous time dynamical models that are switched in and out of an extended Kalman filter to fuse measurements from a novel leg pose sensor and inertial sensors. Our inertial measurement unit supplements the traditionally paired three-axis rate gyro and three-axis accelerometer with a set of three additional three-axis accelerometer suites, thereby providing additional angular acceleration measurement, avoiding the need for localization of the accelerometer at the center of mass on the robot’s body, and simplifying installation and calibration. We implement this estimation procedure offline, using data extracted from numerous repeated runs of the hexapod robot RHex (bearing the appropriate sensor suite) and evaluate its performance with reference to a visual ground-truth measurement system, comparing as well the relative performance of different fusion approaches implemented via different model sequences

    Piezoelectric energy harvesting solutions

    Get PDF
    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions

    Development of MEMS Piezoelectric Vibration Energy Harvesters with Wafer-Level Integrated Tungsten Proof-Mass for Ultra Low Power Autonomous Wireless Sensors

    Get PDF
    La génération d’énergie localisée et à petite échelle, par transformation de l’énergie vibratoire disponible dans l’environnement, est une solution attrayante pour améliorer l’autonomie de certains noeuds de capteurs sans-fil pour l’Internet des objets (IoT). Grâce à des microdispositifs inertiels résonants piézoélectriques, il est possible de transformer l’énergie mécanique en électricité. Cette thèse présente une étude exhaustive de cette technologie et propose un procédé pour fabriquer des microgénérateurs MEMS offrant des performances surpassant l’état de l’art. On présente d’abord une revue complète des limites physiques et technologiques pour identifier le meilleur chemin d’amélioration. En évaluant les approches proposées dans la littérature (géométrie, architecture, matériaux, circuits, etc.), nous suggérons des métriques pour comparer l’état de l’art. Ces analyses démontrent que la limite fondamentale est l’énergie absorbée par le dispositif, car plusieurs des solutions existantes répondent déjà aux autres limites. Pour un générateur linéaire résonant, l’absorption d’énergie dépend donc des vibrations disponibles, mais aussi de la masse du dispositif et de son facteur de qualité. Pour orienter la conception de prototypes, nous avons réalisé une étude sur le potentiel des capteurs autonomes dans une automobile. Nous avons évalué une liste des capteurs présents sur un véhicule pour leur compatibilité avec cette technologie. Nos mesures de vibrations sur un véhicule en marche aux emplacements retenus révèlent que l’énergie disponible pour un dispositif linéaire résonant MEMS se situe entre 30 à 150 Hz. Celui-ci pourrait produire autour de 1 à 10 μW par gramme. Pour limiter la taille d’un générateur MEMS pouvant produire 10 μW, il faut une densité supérieure à celle du silicium, ce qui motive l’intégration du tungstène. L’effet du tungstène sur la sensibilité du dispositif est évident, mais nous démontrons également que l’usage de ce matériau permet de réduire l’impact de l’amortissement fluidique sur le facteur de qualité mécanique Qm. En fait, lorsque l’amortissement fluidique domine, ce changement peut améliorer Qm d’un ordre de grandeur, passant de 103 à 104 dans l’air ambiant. Par conséquent, le rendement du dispositif est amélioré sans utiliser un boîtier sous vide. Nous proposons ensuite un procédé de fabrication qui intègre au niveau de la tranche des masses de tungstène de 500 μm d’épais. Ce procédé utilise des approches de collage de tranches et de gravure humide du métal en deux étapes. Nous présentons chaque bloc de fabrication réalisé pour démontrer la faisabilité du procédé, lequel a permis de fabriquer plusieurs prototypes. Ces dispositifs ont été testés en laboratoire, certains démontrant des performances records en terme de densité de puissance normalisée. Notre meilleur design se démarque par une métrique de 2.5 mW-s-1/(mm3(m/s2)2), soit le meilleur résultat répertorié dans l’état de l’art. Avec un volume de 3.5 mm3, il opère à 552.7 Hz et produit 2.7 μW à 1.6 V RMS à partir d’une accélération de 1 m/s2. Ces résultats démontrent que l’intégration du tungstène dans les microgénérateurs MEMS est très avantageuse et permet de s’approcher davantage des requis des applications réelles.Small scale and localized power generation, using vibration energy harvesting, is considered as an attractive solution to enhance the autonomy of some wireless sensor nodes used in the Internet of Things (IoT). Conversion of the ambient mechanical energy into electricity is most often done through inertial resonant piezoelectric microdevices. This thesis presents an extensive study of this technology and proposes a process to fabricate MEMS microgenerators with record performances compared to the state of the art. We first present a complete review of the physical and technological limits of this technology to asses the best path of improvement. Reported approaches (geometries, architectures, materials, circuits) are evaluated and figures of merit are proposed to compare the state of the art. These analyses show that the fundamental limit is the absorbed energy, as most proposals to date partially address the other limits. The absorbed energy depends on the level of vibrations available, but also on the mass of the device and its quality factor for a linear resonant generator. To guide design of prototypes, we conducted a study on the potential of autonomous sensors in vehicles. A survey of sensors present on a car was realized to estimate their compatibility with energy harvesting technologies. Vibration measurements done on a running vehicle at relevant locations showed that the energy available for MEMS devices is mostly located in a frequency range of 30 to 150 Hz and could generate power in the range of 1-10 μW per gram from a linear resonator. To limit the size of a MEMS generator capable of producing 10 μW, a higher mass density compared to silicon is needed, which motivates the development of a process that incorporates tungsten. Although the effect of tungsten on the device sensitivity is well known, we also demonstrate that it reduces the impact of the fluidic damping on the mechanical quality factor Qm. If fluidic damping is dominant, switching to tungsten can improve Qm by an order of magnitude, going from 103 to 104 in ambient air. As a result, the device efficiency is improved despite the lack of a vacuum package. We then propose a fabrication process flow to integrate 500 μm thick tungsten masses at the wafer level. This process combines wafer bonding with a 2-step wet metal etching approach. We present each of the fabrication nodes realized to demonstrate the feasibility of the process, which led to the fabrication of several prototypes. These devices are tested in the lab, with some designs demonstrating record breaking performances in term of normalized power density. Our best design is noteworthy for its figure of merit that is around 2.5 mW-s-1/(mm3(m/s2)2), which is the best reported in the state of the art. With a volume of 3.5 mm3, it operates at 552.7 Hz and produces 2.7 μW at 1.6 V RMS from an acceleration of 1 m/s2. These results therefore show that tungsten integration in MEMS microgenerators is very advantageous, allowing to reduce the gap with needs of current applications

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    MEMS-based Micro-scale Wind Turbines as Energy Harvesters of the Convective Airflows in Microelectronic Circuits

    Get PDF
    As an alternative to conventional batteries and other energy scavenging techniques, this paper introduces the idea of using micro-turbines to extract energy from wind forces at the microscale level and to supply power to battery-less microsystems. Fundamental research efforts on the design, fabrication, and test of micro-turbines with blade lengths of just 160 μm are presented in this paper along with analytical models and preliminary experimental results. The proof-of-concept prototypes presented herein were fabricated using a standard polysilicon surface micro-machining silicon technology (PolyMUMPs) and could effectively transform the kinetic energy of the available wind into a torque that might drive an electric generator or directly power supply a micro-mechanical system. Since conventional batteries do not scale-down well to the microscale, wind micro-turbines have the potential for becoming a practical alternative power source for microsystems, as well as for extending the operating range of devices running on batteries

    High-Order Robotic Joint Sensing with Multiple Accelerometer and Gyroscope Systems

    Get PDF
    In recent years work into larger humanoid robotic systems and other highly dynamic legged robots has driven a need to increase control system performance and parameter estimation capability. This in turn has seen an increase in the use of higher order joint space derivative terms such as acceleration and jerk being introduced into the control systems and estimators. Although it is evident that the inclusion of these terms can increase the performance of the estimators and control systems, there is a distinct lack of high quality sensors or systems capable of providing this information. Instead it is apparent that those researchers aiming to employ the acceleration and jerk terms are having to resort to other poor quality methods of acquiring the information, which in turn limits the capability of the systems. The works examined suggest that in particular, access to higher quality sources of joint space acceleration measurement or estimation can lead to increases in the performance of control systems and estimators employing these terms. The aim of this work is to investigate the feasibility and capability of a new joint space sensor based on positional encoders and MEMs accelerometers that can estimate angular joint position, velocity and acceleration. The system proposed employs the accelerometer only IMU (AO-IMU) concept to estimate link angular acceleration and velocity in an inertial frame. This concept is then extended to obtain these angular components relative to the previous link. Sensor fusion techniques are then tasked with estimating the velocity states of the AO-IMU and ensuring consistency across the relative states. Two calibration schemes are proposed and demonstrated to correct for the bias, gain and cross axis effects present in the inertial sensors and to correct for the non-ideal placement of the sensors on the body frame. The performance of the system is compared to three online methods common in the literature with significant increases in performance being shown across all states, particularly in the acceleration and velocity states. The base sensor system is then augmented to explore alternate inertial sensor arrangements and structures. In this the effects of adding MEMs gyroscopes to the sensor system are studied and shown to have a small positive effect on the relative velocity state. The addition of multiple relative accelerometers are then studied to examine whether the initial system design choices could be improved upon, with this study showing greater increases in the relative acceleration and velocity states performance. Taking inspiration from the positive results of the multiple relative accelerometer study, an alternate sensor system structure is proposed whereby the robot is instrumented with AO-IMUs and the relative accelerometers omitted. This augmented structure may prove more useful in larger robotic systems. This study initially showed poor results with the low angular velocities experienced by the upper link AO-IMU introducing bias errors. This was corrected for by the inclusion of gyroscopes with the resulting system exhibiting good performance. The findings within this work show that with some modification, the AO-IMU is capable of directly measuring the relative angular acceleration and velocity of a robotic link. When combined with positional sensors this system can be extended to obtain high quality measurements of a joint’s angular position, velocity and acceleration.Thesis (MPhil) -- University of Adelaide, School of Mechanical Engineering, 201

    Evaluation of Pavement Roughness and Vehicle Vibrations for Road Surface Profiling

    Get PDF
    The research explores aspects of road surface measurement and monitoring, targeting some of the main challenges in the field, including cost and portability of high-speed inertial profilers. These challenges are due to the complexities of modern profilers to integrate various sensors while using advanced algorithms and processes to analyse measured sensor data. Novel techniques were proposed to improve the accuracy of road surface longitudinal profiles using inertial profilers. The thesis presents a Half-Wavelength Peak Matching (HWPM) model, designed for inertial profilers that integrate a laser displacement sensor and an accelerometer to evaluate surface irregularities. The model provides an alternative approach to drift correction in accelerometers, which is a major challenge when evaluating displacement from acceleration. The theory relies on using data from the laser displacement sensor to estimate a correction offset for the derived displacement. The study also proposes an alternative technique to evaluating vibration velocity, which improves on computational factors when compared to commonly used methods. The aim is to explore a different dimension to road roughness evaluation, by investigating the effect of surface irregularities on vehicle vibration. The measured samples show that the drift in the displacement calculated from the accelerometer increased as the vehicle speed at which the road measurement was taken increased. As such, the significance of the HWPM model is more apparent at higher vehicle speeds, where the results obtained show noticeable improvements to current techniques. All results and analysis carried out to validate the model are based on real-time data obtained from an inertial profiler that was designed and developed for the research. The profiler, which is designed for portability, scalability and accuracy, provides a Power Over Ethernet (POE) enabled solution to cope with the demand for high data transmission rates.
    corecore