283 research outputs found

    An agent based layered framework to facilitate intelligent Wireless Sensor Networks

    Get PDF
    Includes bibliographical references (leaves 78-80).Wireless Sensor Networks (WSNs) are networks of small, typically low-cost hardware devices which are able to sense various physical phenomenon in their surrounding environments. These simple nodes are also able to perform basic processing and wirelessly communicate with each other. The power of these networks arise from their ability to combine their many vantage points of the individual nodes and to work together. This allows for behaviour to emerge which is greater than the sum of the ability of all the nodes in the network. The complexity of these networks varies based on the application domain and the physical phenomenon being sensed. Although sensor networks are currently well understood and used in a number of real world applications, a number limitations still exit. This research aims to overcome a number of issues faced by current WSNs, the largest of which is their monolithic or tightly coupled structure which result in static and application specific WSNs. We aim to overcome these issues by designing a dynamically reconfigurable system which is application neutral. The proposed system is also required to facilitate intelligence and be sufficiently efficient for low power sensor node hardware

    Meta-parametric design: Developing a computational approach for early stage collaborative practice

    Get PDF
    Computational design is the study of how programmable computers can be integrated into the process of design. It is not simply the use of pre-compiled computer aided design software that aims to replicate the drawing board, but rather the development of computer algorithms as an integral part of the design process. Programmable machines have begun to challenge traditional modes of thinking in architecture and engineering, placing further emphasis on process ahead of the final result. Just as Darwin and Wallace had to think beyond form and inquire into the development of biological organisms to understand evolution, so computational methods enable us to rethink how we approach the design process itself. The subject is broad and multidisciplinary, with influences from design, computer science, mathematics, biology and engineering. This thesis begins similarly wide in its scope, addressing both the technological aspects of computational design and its application on several case study projects in professional practice. By learning through participant observation in combination with secondary research, it is found that design teams can be most effective at the early stage of projects by engaging with the additional complexity this entails. At this concept stage, computational tools such as parametric models are found to have insufficient flexibility for wide design exploration. In response, an approach called Meta-Parametric Design is proposed, inspired by developments in genetic programming (GP). By moving to a higher level of abstraction as computational designers, a Meta-Parametric approach is able to adapt to changing constraints and requirements whilst maintaining an explicit record of process for collaborative working

    Exploiting development to enhance the scalability of hardware evolution.

    Get PDF
    Evolutionary algorithms do not scale well to the large, complex circuit design problems typical of the real world. Although techniques based on traditional design decomposition have been proposed to enhance hardware evolution's scalability, they often rely on traditional domain knowledge that may not be appropriate for evolutionary search and might limit evolution's opportunity to innovate. It has been proposed that reliance on such knowledge can be avoided by introducing a model of biological development to the evolutionary algorithm, but this approach has not yet achieved its potential. Prior demonstrations of how development can enhance scalability used toy problems that are not indicative of evolving hardware. Prior attempts to apply development to hardware evolution have rarely been successful and have never explored its effect on scalability in detail. This thesis demonstrates that development can enhance scalability in hardware evolution, primarily through a statistical comparison of hardware evolution's performance with and without development using circuit design problems of various sizes. This is reinforced by proposing and demonstrating three key mechanisms that development uses to enhance scalability: the creation of modules, the reuse of modules, and the discovery of design abstractions. The thesis includes several minor contributions: hardware is evolved using a common reconfigurable architecture at a lower level of abstraction than reported elsewhere. It is shown that this can allow evolution to exploit the architecture more efficiently and perhaps search more effectively. Also the benefits of several features of developmental models are explored through the biases they impose on the evolutionary search. Features that are explored include the type of environmental context development uses and the constraints on symmetry and information transmission they impose, genetic operators that may improve the robustness of gene networks, and how development is mapped to hardware. Also performance is compared against contemporary developmental models

    Geoprocessing Optimization in Grids

    Get PDF
    Geoprocessing is commonly used in solving problems across disciplines which feature geospatial data and/or phenomena. Geoprocessing requires specialized algorithms and more recently, due to large volumes of geospatial databases and complex geoprocessing operations, it has become data- and/or compute-intensive. The conventional approach, which is predominately based on centralized computing solutions, is unable to handle geoprocessing efficiently. To that end, there is a need for developing distributed geoprocessing solutions by taking advantage of existing and emerging advanced techniques and high-performance computing and communications resources. As an emerging new computing paradigm, grid computing offers a novel approach for integrating distributed computing resources and supporting collaboration across networks, making it suitable for geoprocessing. Although there have been research efforts applying grid computing in the geospatial domain, there is currently a void in the literature for a general geoprocessing optimization. In this research, a new optimization technique for geoprocessing in grid systems, Geoprocessing Optimization in Grids (GOG), is designed and developed. The objective of GOG is to reduce overall response time with a reasonable cost. To meet this objective, GOG contains a set of algorithms, including a resource selection algorithm and a parallelism processing algorithm, to speed up query execution. GOG is validated by comparing its optimization time and estimated costs of generated execution plans with two existing optimization techniques. A proof of concept based on an application in air quality control is developed to demonstrate the advantages of GOG

    Adaptation and self-organization in evolutionary algorithms

    Full text link
    The objective of Evolutionary Computation is to solve practical problems (e.g.optimization, data mining) by simulating the mechanisms of natural evolution. This thesis addresses several topics related to adaptation and self-organization in evolving systems with the overall aims of improving the performance of Evolutionary Algorithms (EA), understanding its relation to natural evolution, and incorporating new mechanisms for mimicking complex biological systems. Part I of this thesis presents a new mechanism for allowing an EA to adapt its behavior in response to changes in the environment. Using the new approach, adaptation of EA behavior (i.e. control of EA design parameters) is driven by an analysis of population dynamics, as opposed to the more traditional use of fitness measurements. Comparisons with a number of adaptive control methods from the literature indicate substantial improvements in algorithm performance for a range of artificial and engineering design problems. Part II of this thesis involves a more thorough analysis of EA behavior based on the methods derived in Part 1. In particular, several properties of EA population dynamics are measured and compared with observations of evolutionary dynamics in nature. The results demonstrate that some large scale spatial and temporal features of EA dynamics are remarkably similar to their natural counterpart. Compatibility of EA with the Theory of Self-Organized Criticality is also discussed. Part III proposes fundamentally new directions in EA research which are inspired by the conclusions drawn in Part II. These changes involve new mechanisms which allow self-organization of the EA to occur in ways which extend beyond its common convergence in parameter space. In particular, network models for EA populations are developed where the network structure is dynamically coupled to EA population dynamics. Results indicate strong improvements in algorithm performance compared to cellular Genetic Algorithms and non-distributed EA designs. Furthermore, topological analysis indicates that the population network can spontaneously evolve to display similar characteristics to the interaction networks of complex biological systems

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Detecting Well-being in Digital Communities: An Interdisciplinary Engineering Approach for its Indicators

    Get PDF
    In this thesis, the challenges of defining, refining, and applying well-being as a progressive management indicator are addressed. This work\u27s implications and contributions are highly relevant for service research as it advances the integration of consumer well-being and the service value chain. It also provides a substantial contribution to policy and strategic management by integrating constituents\u27 values and experiences with recommendations for progressive community management

    Detecting Well-being in Digital Communities: An Interdisciplinary Engineering Approach for its Indicators

    Get PDF
    In this thesis, the challenges of defining, refining, and applying well-being as a progressive management indicator are addressed. This work\u27s implications and contributions are highly relevant for service research as it advances the integration of consumer well-being and the service value chain. It also provides a substantial contribution to policy and strategic management by integrating constituents\u27 values and experiences with recommendations for progressive community management

    Cyber Law and Espionage Law as Communicating Vessels

    Get PDF
    Professor Lubin\u27s contribution is Cyber Law and Espionage Law as Communicating Vessels, pp. 203-225. Existing legal literature would have us assume that espionage operations and “below-the-threshold” cyber operations are doctrinally distinct. Whereas one is subject to the scant, amorphous, and under-developed legal framework of espionage law, the other is subject to an emerging, ever-evolving body of legal rules, known cumulatively as cyber law. This dichotomy, however, is erroneous and misleading. In practice, espionage and cyber law function as communicating vessels, and so are better conceived as two elements of a complex system, Information Warfare (IW). This paper therefore first draws attention to the similarities between the practices – the fact that the actors, technologies, and targets are interchangeable, as are the knee-jerk legal reactions of the international community. In light of the convergence between peacetime Low-Intensity Cyber Operations (LICOs) and peacetime Espionage Operations (EOs) the two should be subjected to a single regulatory framework, one which recognizes the role intelligence plays in our public world order and which adopts a contextual and consequential method of inquiry. The paper proceeds in the following order: Part 2 provides a descriptive account of the unique symbiotic relationship between espionage and cyber law, and further explains the reasons for this dynamic. Part 3 places the discussion surrounding this relationship within the broader discourse on IW, making the claim that the convergence between EOs and LICOs, as described in Part 2, could further be explained by an even larger convergence across all the various elements of the informational environment. Parts 2 and 3 then serve as the backdrop for Part 4, which details the attempt of the drafters of the Tallinn Manual 2.0 to compartmentalize espionage law and cyber law, and the deficits of their approach. The paper concludes by proposing an alternative holistic understanding of espionage law, grounded in general principles of law, which is more practically transferable to the cyber realmhttps://www.repository.law.indiana.edu/facbooks/1220/thumbnail.jp
    • …
    corecore