278 research outputs found

    Temporal dynamics of target selection and distractor suppression mechanisms in the right Frontal Eye Field

    Get PDF
    The ability of the human brain to selectively attend to relevant information while ignoring irrelevant distraction is essential for the successful completion of everyday tasks. The present PhD project aimed to unravel the temporal dynamics of target selection and distractor suppression in the Frontal Eye Field (FEF), a key node in the dorsolateral attention network. Previous research (Lega et al., 2019) had assessed the contribution of both IPS and FEF to the deployment of visuo- spatial attention by means of 10 Hz TMS during a visual search task. The stimulation was delivered in a post-stimulus epoch from 100 to 300 ms, considered crucial for attentional computations in visual search. This study found that the TMS protocol improved distractor suppression mechanisms, reducing the cost engendered by salient but task-irrelevant distractors. To further clarify the temporal contribution of right FEF to distractor suppression, two experiments were carried out. Experiment 1 applied single-pulse TMS over right FEF at three different time points, 50, 200 or 350 ms after search array onset. Experiment 2 aimed to exert a stronger TMS effect over right FEF while maintaining a temporal-punctate approach. It applied trains of triple-pulse TMS at 20 Hz over right FEF in three different time windows: from -50 to 50 ms (T1), from 100 to 200 ms (T2) and from 250 to 350 ms (T3) after the search array onset. While Experiment 1 showed only a general, time-unspecific and quasi- significant effect of stimulation over response times, Experiment 2 revealed that stimulation at T2 (100-200 ms) was associated with an increase of the distractor cost, specifically for distractors located contralaterally to the stimulation site. These findings support the role of right FEF in suppressing distractions from salient but irrelevant stimuli and suggest that TMS may activate/inhibit the neural network that regulates and limits interference from such distractions. Further research is needed to precisely assess the physiological effects of different TMS protocols of the right FEF and its influence on attentional computation

    Exploring the psychophysiology of mantra meditation: effects of repetitive speech on attention, autonomic control, and cortical entrainment

    Get PDF
    A fala repetida foi considerada como uma componente fundamental da meditação com mantras, mas muito permanece por saber acerca dos mecanismos neurocognitivos que poderá envolver. Este estudo teve dois objetivos principais: perceber se a fala repetida com um mantra e a fala repetida com palavras elicitaria os correlatos típicos da meditação com mantras (atenção e controlo autómico aumentados) de forma semelhante; testar se a fala repetida elicitaria entrainment cortical à frequência de repetição. Os participantes (n = 12) realizaram tarefas de fala repetida em três condições: mantra repetido a um ritmo de 0.2 Hz, palavra repetida a 0.2 Hz e palavra repetida a 1 Hz. Foram obtidas medidas comportamentais e eletrofisiológicas durante uma tarefa auditiva oddball como marcadores de atenção, e foi medido o ritmo cardíaco. Os resultados indicam que tanto a fala repetida com um mantra como a fala repetida com palavras levaram a uma redução generalizada da responsividade a estímulos não-alvo. A repetição contínua e rítmica de palavras não-mantra é, por isso, capaz de modular a atenção, um resultado que acrescenta à evidência de que a fala repetida é uma componente relevante da meditação com mantras. Por outro lado, o controlo autonómico não foi afetado significativamente pela fala repetida. Não foi também encontrada evidência de entrainment à frequência de repetição

    Alpha‐tACS alters attentional control but not cognitive functions as video games do: A psychophysical investigation based on the theory of visual attention

    Get PDF
    Video game players' faster speed of information processing has been shown to coincide with altered posterior alpha power modulation, that is, brain oscillatory activity around 10 Hz. Thus, it was proposed that improved cognitive processing in video game players may be related to differential alpha activity. However, a causal relationship thereof has not yet been established. We addressed this by conducting a non-invasive brain stimulation study to demonstrate that modulating alpha power using transcranial alternating current stimulation (tACS) may impact on speed of information processing. Furthermore, we aimed to show that this effect correlated with altered attentional control, for example, visuospatial attention and/or top-down control processing, given that this has been suggested to contribute to video gaming effects. Therefore, we recruited 19 non-video game players to undergo one of five brain stimulation conditions while performing a visual short-term memory task at five different days, respectively. Thus, we applied tACS either at 10 Hz (alpha frequency) or at 16.18 Hz (control frequency) either over their left or right posterior parietal cortex (PPC) or a sham stimulation. Individuals' speed of information processing, visuospatial attention and top-down control processing were operationalised using a computational modelling approach based on the theory of visual attention. We found that alpha-tACS applied over individuals' left PPC altered their visuospatial attention orientation but not their speed of information processing. Thus, we were not able to establish a causal relationship between speed of information processing and altered visuospatial attention processing through alpha power modulation using non-invasive brain stimulation

    Dynamic Oscillatory Interactions Between Neural Attention and Sensorimotor Systems

    Get PDF
    The adaptive and flexible ability of the human brain to preference the processing of salient environmental features in the visual space is essential to normative cognitive function, and various neurologically afflicted patient groups report negative impacts on visual attention. While the brain-bases of human attentional processing have begun to be unraveled, very little is known regarding the interactions between attention systems and systems supporting sensory and motor processing. This is essential, as these interactions are dynamic; evolving rapidly in time and across a wide range of functionally defined rhythmic frequencies. Using magnetoencephalography (MEG) and a range of novel cognitive paradigms and analytical techniques, this work attempts to fill critical gaps in this knowledge. Specifically, we unravel the role of dynamic oscillatory interactions between attention and three sensorimotor systems. First, we establish the importance of sub-second occipital alpha (8 – 14 Hz) oscillatory responses in visual distractor suppression during selective attention (Chapter 1) and their essential role in fronto-parietal attention networks during visual orienting (Chapter 2). Next, we examine the divergent effects of directed attention on multi-frequency primary somatosensory neural oscillations in the theta (4 – 8 Hz), alpha, and beta (18 – 26 Hz) bands (Chapter 3). Finally, we extend these findings to the motor system (Chapter 4), and find that the frontal and parietal beta-frequency oscillations known to support motor planning and execution are modulated equivalently by differing subtypes of attentional interference, whereas frontal gamma (64 – 84 Hz) oscillations specifically index the superadditive effect of this interference. These findings provide new insight into the dynamic nature of attention-sensorimotor interactions in the human brain, and will be the foundation for groundbreaking new studies of attentional deficits in patients with common neurological disorders (e.g., Alzheimer’s disease, HIV-associated neurocognitive disorders, Parkinson’s disease). With an enhanced knowledge of the temporal and spectral definitions of these impairments, new therapeutic interventions utilizing frequency-targeted neural stimulation can be developed

    NeuroGame: neural mechanisms underlying cognitive improvement in video gamers

    Get PDF
    The video game market represents an influential and profitable industry. But concerns have been raised how video games impact on the human mind. There are reservations that video gaming may be addictive and foster aggressive behaviour. In contrast, a convincing body of research indicates that playing video games may improve cognitive processing. The exact mechanism thereof is not entirely understood. Most research suggests that video games train individuals in learning how to employ attentional control to focus on processing relevant information, while being able to suppress irrelevant information. Thus, video game players acquire the ability of being able to develop strategies to process information more efficiently. However, no algorithmic solution therefore has been provided yet. Thus, it is not clear which and how attentional control functions contribute to these effects. Moreover, neural mechanisms thereof are not well understood. We hypothesized that alterations in alpha power, i.e., modulations in brain oscillatory activity around 10 Hz, represent a promising neural substrate of video gaming effects. This was because, alpha activity represents an established neural correlate of attention processing given that its amplitude modulation corresponds to alterations in information processing. We investigated this by relating differential cognitive processing in video game players to changes in alpha power modulation. Moreover, we tried to imitate this effect using non-invasive brain stimulation. We were successful in achieving the former but not the latter. We provide a reasonable explanation for this. Thus, our results mostly support our hypothesis according to which altered alpha power may account for gaming effects

    Decoding auditory attention and neural language processing in adverse conditions and different listener groups

    Get PDF
    This thesis investigated subjective, behavioural and neurophysiological (EEG) measures of speech processing in various adverse conditions and with different listener groups. In particular, this thesis focused on different neural processing stages and their relationship with auditory attention, effort, and measures of speech intelligibility. Study 1 set the groundwork by establishing a toolbox of various neural measures to investigate online speech processing, from the frequency following response (FFR) and cortical measures of speech processing, to the N400, a measure of lexico-semantic processing. Results showed that peripheral processing is heavily influenced by stimulus characteristics such as degradation, whereas central processing units are more closely linked to higher-order phenomena such as speech intelligibility. In Study 2, a similar experimental paradigm was used to investigate differences in neural processing between a hearing-impaired and a normal-hearing group. Subjects were presented with short stories in different levels of multi-talker babble noise, and with different settings on their hearing aids. Findings indicate that, particularly at lower noise levels, the hearing-impaired group showed much higher cortical entrainment than the normal- hearing group, despite similar levels of speech recognition. Intersubject correlation, another global neural measure of auditory attention, however, was similarly affected by noise levels in both the hearing-impaired and the normal-hearing group. This finding indicates extra processing in the hearing-impaired group only on the level of the auditory cortex. Study 3, in contrast to Studies 1 and 2 (which both investigated the effects of bottom-up factors on neural processing), examined the links between entrainment and top-down factors, specifically motivation; as well as reasons for the 5 higher entrainment found in hearing-impaired subjects in Study 2. Results indicated that, while behaviourally there was no difference between incentive and non-incentive conditions, neurophysiological measures of attention such as intersubject correlation were affected by the presence of an incentive to perform better. Moreover, using a specific degradation type resulted in subjects’ increased cortical entrainment under degraded conditions. These findings support the hypothesis that top-down factors such as motivation influence neurophysiological measures; and that higher entrainment to degraded speech might be triggered specifically by the reduced availability of spectral detail contained in speech

    Occipital Alpha and Gamma Oscillations Support Complementary Mechanisms for Processing Stimulus Value Associations.

    Get PDF
    Selective attention is reflected neurally in changes in the power of posterior neural oscillations in the alpha (8–12 Hz) and gamma (40–100 Hz) bands. Although a neural mechanism that allows relevant information to be selectively processed has its advantages, it may lead to lucrative or dangerous information going unnoticed. Neural systems are also in place for processing rewarding and punishing information. Here, we examine the interaction between selective attention (left vs. right) and stimulus's learned value associations (neutral, punished, or rewarded) and how they compete for control of posterior neural oscillations. We found that both attention and stimulus–value associations influenced neural oscillations. Whereas selective attention had comparable effects on alpha and gamma oscillations, value associations had dissociable effects on these neural markers of attention. Salient targets (associated with positive and negative outcomes) hijacked changes in alpha power—increasing hemispheric alpha lateralization when salient targets were attended, decreasing it when they were being ignored. In contrast, hemispheric gamma-band lateralization was specifically abolished by negative distractors. Source analysis indicated occipital generators of both attentional and value effects. Thus, posterior cortical oscillations support both the ability to selectively attend while at the same time retaining the ability to remain sensitive to valuable features in the environment. Moreover, the versatility of our attentional system to respond separately to salient from merely positively valued stimuli appears to be carried out by separate neural processes reflected in different frequency bands
    corecore