248,740 research outputs found

    Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers

    Full text link
    We present a new methodology to determine the expansion history of the Universe analyzing the spectral properties of early type galaxies (ETG). We found that for these galaxies the 4000\AA break is a spectral feature that correlates with the relative ages of ETGs. In this paper we describe the method, explore its robustness using theoretical synthetic stellar population models, and apply it using a SDSS sample of ∼\sim14 000 ETGs. Our motivation to look for a new technique has been to minimise the dependence of the cosmic chronometer method on systematic errors. In particular, as a test of our method, we derive the value of the Hubble constant H0=72.6±2.8H_0 = 72.6 \pm 2.8 (stat) ±2.3\pm2.3 (syst) (68% confidence), which is not only fully compatible with the value derived from the Hubble key project, but also with a comparable error budget. Using the SDSS, we also derive, assuming w=constant, a value for the dark energy equation of state parameter w=−1±0.2w = -1 \pm 0.2 (stat) ±0.3\pm0.3 (syst). Given the fact that the SDSS ETG sample only reaches z∼0.3z \sim 0.3, this result shows the potential of the method. In future papers we will present results using the high-redshift universe, to yield a determination of H(z) up to z∼1z \sim 1.Comment: 25 pages, 17 figures, JCAP accepte

    Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    Full text link
    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.Comment: 13 pages, 7 figure

    Minimum free-energy path of homogenous nucleation from the phase-field equation

    Full text link
    The minimum free-energy path (MFEP) is the most probable route of the nucleation process on the multidimensional free-energy surface. In this study, the phase-field equation is used as a mathematical tool to deduce the minimum free-energy path (MFEP) of homogeneous nucleation. We use a simple square-gradient free-energy functional with a quartic local free-energy function as an example and study the time evolution of a single nucleus placed within a metastable environment. The time integration of the phase-field equation is performed using the numerically efficient cell-dynamics method. By monitoring the evolution of the size of the nucleus and the free energy of the system simultaneously, we can easily deduce the free-energy barrier as a function of the size of the sub- and the super-critical nucleus along the MFEP.Comment: 8 pages, 5 figures, Journal of Chemical Physics accepted for publicatio

    Cell Dynamics Simulation of Kolmogorov-Johnson-Mehl-Avrami Kinetics of Phase Transformation

    Full text link
    In this study, we use the cell dynamics method to test the validity of the Kormogorov-Johnson-Mehl-Avrami (KJMA) theory of phase transformation. This cell dynamics method is similar to the well-known phase-field model, but it is a more simple and efficient numerical method for studying various scenarios of phase transformation in a unified manner. We find that the cell dynamics method reproduces the time evolution of the volume fraction of the transformed phase predicted by the KJMA theory. Specifically, the cell dynamics simulation reproduces a double-logarithmic linear KJMA plot and confirms the integral Avrami exponents nn predicted from the KJMA theory. Our study clearly demonstrates that the cell dynamics approach is not only useful for studying the pattern formation but also for simulating the most basic properties of phase transformation.Comment: 16 page, 8 figure

    Formation of singularities on the surface of a liquid metal in a strong electric field

    Full text link
    The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates from a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.Comment: 14 page

    Collapse of Charged Scalar Field in Dilaton Gravity

    Full text link
    We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.Comment: 36 pages, 51 figures, to be published in Phys.Rev.D1

    A Cosmic Battery

    Get PDF
    We show that the Poynting-Robertson drag effect in an optically thin advection-dominated accretion flow around active gravitating objects generates strong azimuthal electric currents which give rise to astrophysically significant magnetic fields. Although the mechanism is most effective in accreting compact objects, it seems very promising to also account for the generation of stellar dipolar fields during the late protostellar collapse phase, when the star approaches the main sequence.Comment: 12 pages Latex, 1 postscript figure, to appear in the Astrophysical Journa
    • …
    corecore