118,084 research outputs found

    Some Ulam's reconstruction problems for quantum states

    Full text link
    Provided a complete set of putative kk-body reductions of a multipartite quantum state, can one determine if a joint state exists? We derive necessary conditions for this to be true. In contrast to what is known as the quantum marginal problem, we consider a setting where the labeling of the subsystems is unknown. The problem can be seen in analogy to Ulam's reconstruction conjecture in graph theory. The conjecture - still unsolved - claims that every graph on at least three vertices can uniquely be reconstructed from the set of its vertex-deleted subgraphs. When considering quantum states, we demonstrate that the non-existence of joint states can, in some cases, already be inferred from a set of marginals having the size of just more than half of the parties. We apply these methods to graph states, where many constraints can be evaluated by knowing the number of stabilizer elements of certain weights that appear in the reductions. This perspective links with constraints that were derived in the context of quantum error-correcting codes and polynomial invariants. Some of these constraints can be interpreted as monogamy-like relations that limit the correlations arising from quantum states. Lastly, we provide an answer to Ulam's reconstruction problem for generic quantum states.Comment: 22 pages, 3 figures, v2: significantly revised final versio

    Modular Decomposition and the Reconstruction Conjecture

    Get PDF
    We prove that a large family of graphs which are decomposable with respect to the modular decomposition can be reconstructed from their collection of vertex-deleted subgraphs.Comment: 9 pages, 2 figure

    Broadcasting on Random Directed Acyclic Graphs

    Full text link
    We study a generalization of the well-known model of broadcasting on trees. Consider a directed acyclic graph (DAG) with a unique source vertex XX, and suppose all other vertices have indegree d2d\geq 2. Let the vertices at distance kk from XX be called layer kk. At layer 00, XX is given a random bit. At layer k1k\geq 1, each vertex receives dd bits from its parents in layer k1k-1, which are transmitted along independent binary symmetric channel edges, and combines them using a dd-ary Boolean processing function. The goal is to reconstruct XX with probability of error bounded away from 1/21/2 using the values of all vertices at an arbitrarily deep layer. This question is closely related to models of reliable computation and storage, and information flow in biological networks. In this paper, we analyze randomly constructed DAGs, for which we show that broadcasting is only possible if the noise level is below a certain degree and function dependent critical threshold. For d3d\geq 3, and random DAGs with layer sizes Ω(logk)\Omega(\log k) and majority processing functions, we identify the critical threshold. For d=2d=2, we establish a similar result for NAND processing functions. We also prove a partial converse for odd d3d\geq 3 illustrating that the identified thresholds are impossible to improve by selecting different processing functions if the decoder is restricted to using a single vertex. Finally, for any noise level, we construct explicit DAGs (using expander graphs) with bounded degree and layer sizes Θ(logk)\Theta(\log k) admitting reconstruction. In particular, we show that such DAGs can be generated in deterministic quasi-polynomial time or randomized polylogarithmic time in the depth. These results portray a doubly-exponential advantage for storing a bit in DAGs compared to trees, where d=1d=1 but layer sizes must grow exponentially with depth in order to enable broadcasting.Comment: 33 pages, double column format. arXiv admin note: text overlap with arXiv:1803.0752

    An algebraic formulation of the graph reconstruction conjecture

    Get PDF
    The graph reconstruction conjecture asserts that every finite simple graph on at least three vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted subgraphs. Kocay's Lemma is an important tool in graph reconstruction. Roughly speaking, given the deck of a graph GG and any finite sequence of graphs, it gives a linear constraint that every reconstruction of GG must satisfy. Let ψ(n)\psi(n) be the number of distinct (mutually non-isomorphic) graphs on nn vertices, and let d(n)d(n) be the number of distinct decks that can be constructed from these graphs. Then the difference ψ(n)d(n)\psi(n) - d(n) measures how many graphs cannot be reconstructed from their decks. In particular, the graph reconstruction conjecture is true for nn-vertex graphs if and only if ψ(n)=d(n)\psi(n) = d(n). We give a framework based on Kocay's lemma to study this discrepancy. We prove that if MM is a matrix of covering numbers of graphs by sequences of graphs, then d(n)rankR(M)d(n) \geq \mathsf{rank}_\mathbb{R}(M). In particular, all nn-vertex graphs are reconstructible if one such matrix has rank ψ(n)\psi(n). To complement this result, we prove that it is possible to choose a family of sequences of graphs such that the corresponding matrix MM of covering numbers satisfies d(n)=rankR(M)d(n) = \mathsf{rank}_\mathbb{R}(M).Comment: 12 pages, 2 figure

    Quiet Planting in the Locked Constraint Satisfaction Problems

    Full text link
    We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble. In a part of that hard region instances have with high probability a single satisfying assignment.Comment: 21 pages, revised versio
    corecore