2,147 research outputs found

    Cutoff on Graphs and the Sarnak-Xue Density of Eigenvalues

    Full text link
    It was recently shown by Lubetzky and Peres (2016) and by Sardari (2018) that Ramanujan graphs, i.e., graphs with the optimal spectrum, exhibit cutoff of the simple random walk in optimal time and have optimal almost-diameter. We prove that this spectral condition can be replaced by a weaker condition, the Sarnak-Xue density of eigenvalues property, to deduce similar results. We show that a family of Schreier graphs of the SL2(Ft)SL_{2}\left(\mathbb{F}_{t}\right)-action on the projective line satisfies the Sarnak-Xue density condition, and hence exhibit the desired properties. To the best of our knowledge, this is the first known example of optimal cutoff and almost-diameter on an explicit family of graphs that are neither random nor Ramanujan

    The diameter of random Cayley digraphs of given degree

    Full text link
    We consider random Cayley digraphs of order nn with uniformly distributed generating set of size kk. Specifically, we are interested in the asymptotics of the probability such a Cayley digraph has diameter two as nn\to\infty and k=f(n)k=f(n). We find a sharp phase transition from 0 to 1 at around k=nlognk = \sqrt{n \log n}. In particular, if f(n)f(n) is asymptotically linear in nn, the probability converges exponentially fast to 1.Comment: 11 page
    corecore