43,473 research outputs found

    On the Bragg Diffraction Spectra of a Meyer Set

    Full text link
    Meyer sets have a relatively dense set of Bragg peaks and for this reason they may be considered as basic mathematical examples of (aperiodic) crystals. In this paper we investigate the pure point part of the diffraction of Meyer sets in more detail. The results are of two kinds. First we show that given a Meyer set and any intensity a less than the maximum intensity of its Bragg peaks, the set of Bragg peaks whose intensity exceeds a is itself a Meyer set (in the Fourier space). Second we show that if a Meyer set is modified by addition and removal of points in such a way that its density is not altered too much (the allowable amount being given explicitly as a proportion of the original density) then the newly obtained set still has a relatively dense set of Bragg peaks.Comment: 32 page

    A comment on the relation between diffraction and entropy

    Get PDF
    Diffraction methods are used to detect atomic order in solids. While uniquely ergodic systems with pure point diffraction have zero entropy, the relation between diffraction and entropy is not as straightforward in general. In particular, there exist families of homometric systems, which are systems sharing the same diffraction, with varying entropy. We summarise the present state of understanding by several characteristic examples.Comment: 7 page

    Equicontinuous factors, proximality and Ellis semigroup for Delone sets

    Full text link
    We discuss the application of various concepts from the theory of topological dynamical systems to Delone sets and tilings. We consider in particular, the maximal equicontinuous factor of a Delone dynamical system, the proximality relation and the enveloping semigroup of such systems.Comment: 65 page

    Diffractive point sets with entropy

    Full text link
    After a brief historical survey, the paper introduces the notion of entropic model sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy. Such sets may be thought of as generalizations of lattice gases. We show that taking the site occupation of a model set stochastically results, with probabilistic certainty, in well-defined diffractive properties augmented by a constant diffuse background. We discuss both the case of independent, but identically distributed (i.i.d.) random variables and that of independent, but different (i.e., site dependent) random variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th birthday; final version, some minor addition

    Kinematic Diffraction from a Mathematical Viewpoint

    Full text link
    Mathematical diffraction theory is concerned with the analysis of the diffraction image of a given structure and the corresponding inverse problem of structure determination. In recent years, the understanding of systems with continuous and mixed spectra has improved considerably. Simultaneously, their relevance has grown in practice as well. In this context, the phenomenon of homometry shows various unexpected new facets. This is particularly so for systems with stochastic components. After the introduction to the mathematical tools, we briefly discuss pure point spectra, based on the Poisson summation formula for lattice Dirac combs. This provides an elegant approach to the diffraction formulas of infinite crystals and quasicrystals. We continue by considering classic deterministic examples with singular or absolutely continuous diffraction spectra. In particular, we recall an isospectral family of structures with continuously varying entropy. We close with a summary of more recent results on the diffraction of dynamical systems of algebraic or stochastic origin.Comment: 30 pages, invited revie
    corecore