16,365 research outputs found

    Potential mass surveillance and privacy violations in proximity-based social applications

    Get PDF
    Proximity-based social applications let users interact with people that are currently close to them, by revealing some information about their preferences and whereabouts. This information is acquired through passive geo-localisation and used to build a sense of serendipitous discovery of people, places and interests. Unfortunately, while this class of applications opens different interactions possibilities for people in urban settings, obtaining access to certain identity information could lead a possible privacy attacker to identify and follow a user in their movements in a specific period of time. The same information shared through the platform could also help an attacker to link the victim's online profiles to physical identities. We analyse a set of popular dating application that shares users relative distances within a certain radius and show how, by using the information shared on these platforms, it is possible to formalise a multilateration attack, able to identify the user actual position. The same attack can also be used to follow a user in all their movements within a certain period of time, therefore identifying their habits and Points of Interest across the city. Furthermore we introduce a social attack which uses common Facebook likes to profile a person and finally identify their real identity

    WARP: A ICN architecture for social data

    Full text link
    Social network companies maintain complete visibility and ownership of the data they store. However users should be able to maintain full control over their content. For this purpose, we propose WARP, an architecture based upon Information-Centric Networking (ICN) designs, which expands the scope of the ICN architecture beyond media distribution, to provide data control in social networks. The benefit of our solution lies in the lightweight nature of the protocol and in its layered design. With WARP, data distribution and access policies are enforced on the user side. Data can still be replicated in an ICN fashion but we introduce control channels, named \textit{thread updates}, which ensures that the access to the data is always updated to the latest control policy. WARP decentralizes the social network but still offers APIs so that social network providers can build products and business models on top of WARP. Social applications run directly on the user's device and store their data on the user's \textit{butler} that takes care of encryption and distribution. Moreover, users can still rely on third parties to have high-availability without renouncing their privacy

    HIDING BEHIND THE CLOUDS: EFFICIENT, PRIVACY-PRESERVING QUERIES VIA CLOUD PROXIES

    Get PDF
    This project proposes PriView, a privacy-preserving technique for querying third-party ser- vices from mobile devices. Classical private information retrieval (PIR) schemes are diffi- cult to deploy and use, since they require the target service to be replicated and modified. To avoid this problem, PriView utilizes a novel, proxy-mediated form of PIR, in which the client device fetches XORs of dummy query responses from each of two proxies and combines them to produce the required result. Unlike conventional PIR, PriView does not require the third-party service to be replicated or modified in any way. We evaluated a PriView implementation for the Google Static Maps service utilizing an Android OS front- end and Amazon EC2 proxies. PriView is able to provide tunable confidentiality with low overhead, allowing bandwidth usage, power consumption, and end-to-end latency to scale sublinearly with the provided degree of confidentiality
    • …
    corecore