30,546 research outputs found

    Allocation of Communications to Reduce Mental Workload

    Get PDF
    As the United States Department of Defense continues to increase the number of Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems Integration becomes increasingly important. Manpower limitations have motivated the investigation of Multiple Aircraft Control (MAC) configurations where a single pilot controls multiple RPAs simultaneously. Previous research has indicated that frequent, unpredictable, and oftentimes overwhelming, volumes of communication events can produce unmanageable levels of system induced workload for MAC pilots. Existing human computer interface design includes both visual information with typed responses, which conflict with numerous other visual tasks the pilot performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload models of pilot activities flying multiple aircraft. Specifically, we examine statically reallocating communication modality with the goal to reduce and minimize the overall pilot cognitive workload. The analysis investigates the impact of various communication reallocations on predicted pilot workload, measured by the percent of time workload is over a saturation threshold

    In loco intellegentia: Human factors for the future European train driver

    Get PDF
    The European Rail Traffic Management System (ERTMS) represents a step change in technology for rail operations in Europe. It comprises track-to-train communications and intelligent on-board systems providing an unprecedented degree of support to the train driver. ERTMS is designed to improve safety, capacity and performance, as well as facilitating interoperability across the European rail network. In many ways, particularly from the human factors perspective, ERTMS has parallels with automation concepts in the aviation and automotive industries. Lessons learned from both these industries are that such a technology raises a number of human factors issues associated with train driving and operations. The interaction amongst intelligent agents throughout the system must be effectively coordinated to ensure that the strategic benefits of ERTMS are realised. This paper discusses the psychology behind some of these key issues, such as Mental Workload (MWL), interface design, user information requirements, transitions and migration and communications. Relevant experience in aviation and vehicle automation is drawn upon to give an overview of the human factors challenges facing the UK rail industry in implementing ERTMS technology. By anticipating and defining these challenges before the technology is implemented, it is hoped that a proactive and structured programme of research can be planned to meet them

    A Minimum-Cost Flow Model for Workload Optimization on Cloud Infrastructure

    Full text link
    Recent technology advancements in the areas of compute, storage and networking, along with the increased demand for organizations to cut costs while remaining responsive to increasing service demands have led to the growth in the adoption of cloud computing services. Cloud services provide the promise of improved agility, resiliency, scalability and a lowered Total Cost of Ownership (TCO). This research introduces a framework for minimizing cost and maximizing resource utilization by using an Integer Linear Programming (ILP) approach to optimize the assignment of workloads to servers on Amazon Web Services (AWS) cloud infrastructure. The model is based on the classical minimum-cost flow model, known as the assignment model.Comment: 2017 IEEE 10th International Conference on Cloud Computin

    The management of academic workloads: full report on findings

    Get PDF
    The pressures on UK higher education (from explicit competition and growth in student numbers, to severe regulatory demands) are greater than ever, and have resulted in a steady increase in measures taken by universities to actively manage their finances and overall quality. These pressures are also likely to have impacted on staff and, indeed, recent large surveys in the sector have indicated that almost half of respondents find their workloads unmanageable. Against this background it would seem logical that the emphasis on institutional interventions to improve finance and quality, should be matched by similar attention given to the allocation of workloads to staff, and a focus on how best to utilise people’s time - the single biggest resource available within universities. Thus the aim of this piece of research was to focus on the processes and practices surrounding the allocation of staff workloads within higher education. Ten diverse organisations were selected for study: six universities in the UK, two overseas universities and two non higher education (but knowledge-intensive) organisations. In each, a crosssection of staff was selected, and in-depth interviews carried out. A total of 59 such interviews were carried out across the ten organisations. By identifying typical practices, as well as interesting alternatives, views on the various strengths and weaknesses of each of their workload allocation approaches was collated; and associated factors requiring attention identified. Through an extensive process of analysis, approaches which promoted more equitable loads for individuals, and which might provide synergies for institutions were also investigated

    Discrete Event Simulation of Distributed Team Communication Architecture

    Get PDF
    As the United States Department of Defense continues to increase the number of Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems Integration becomes increasingly important. RPA systems rely heavily on distributed team communications determined by systems architecture. Two studies examine the effects of systems architecture on operator workload of US Air Force MQ-1/9 operators. The first study ascertains the effects of communication modality changes on mental workload using the Improved Research Integration Pro (IMPRINT) software tool to estimate pilot workload. Allocation of communication between modalities minimizes workload. The second study uses IMPRINT to model Mission Intelligence Controllers (MICs) and the effect of the system architecture upon them. Four system configurations were simulated for four mission activity levels. Mental workload, monitoring time and the number of delayed tasks were estimated to determine the effect of changing system architecture parameters. Literature and MIC interviews provided parameters for the model. The analysis demonstrates that the proposed changes have significant effects which, in some conditions, bring the overall workload function toward a proposed theoretical optimum

    Look Who's Talking Now: Implications of AV's Explanations on Driver's Trust, AV Preference, Anxiety and Mental Workload

    Full text link
    Explanations given by automation are often used to promote automation adoption. However, it remains unclear whether explanations promote acceptance of automated vehicles (AVs). In this study, we conducted a within-subject experiment in a driving simulator with 32 participants, using four different conditions. The four conditions included: (1) no explanation, (2) explanation given before or (3) after the AV acted and (4) the option for the driver to approve or disapprove the AV's action after hearing the explanation. We examined four AV outcomes: trust, preference for AV, anxiety and mental workload. Results suggest that explanations provided before an AV acted were associated with higher trust in and preference for the AV, but there was no difference in anxiety and workload. These results have important implications for the adoption of AVs.Comment: 42 pages, 5 figures, 3 Table

    Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive

    Get PDF
    Intersection accidents result in a significant proportion of road fatalities, and attention allocation likely plays a role. Attention allocation may depend on (limited) working memory (WM) capacity. Driving is often combined with tasks increasing WM load, consequently impairing attention orienting. This study (n = 22) investigated WM load effects on event-related potentials (ERPs) related to attention orienting. A simulated driving environment allowed continuous lane-keeping measurement. Participants were asked to orient attention covertly towards the side indicated by an arrow, and to respond only to moving cars appearing on the attended side by pressing a button. WM load was manipulated using a concurrent memory task. ERPs showed typical attentional modulation (cue: contralateral negativity, LDAP; car: N1, P1, SN and P3) under low and high load conditions. With increased WM load, lane-keeping performance improved, while dual task performance degraded (memory task: increased error rate; orienting task: increased false alarms, smaller P3). Practitioner Summary: Intersection driver-support systems aim to improve traffic safety and flow. However, in-vehicle systems induce WM load, increasing the tendency to yield. Traffic flow reduces if drivers stop at inappropriate times, reducing the effectiveness of systems. Consequently, driver-support systems could include WM load measurement during driving in the development phase

    An evaluation of NASA's program in human factors research: Aircrew-vehicle system interaction

    Get PDF
    Research in human factors in the aircraft cockpit and a proposed program augmentation were reviewed. The dramatic growth of microprocessor technology makes it entirely feasible to automate increasingly more functions in the aircraft cockpit; the promise of improved vehicle performance, efficiency, and safety through automation makes highly automated flight inevitable. An organized data base and validated methodology for predicting the effects of automation on human performance and thus on safety are lacking and without such a data base and validated methodology for analyzing human performance, increased automation may introduce new risks. Efforts should be concentrated on developing methods and techniques for analyzing man machine interactions, including human workload and prediction of performance
    • …
    corecore