55 research outputs found

    Multi-output multilevel best linear unbiased estimators via semidefinite programming

    Full text link
    Multifidelity forward uncertainty quantification (UQ) problems often involve multiple quantities of interest and heterogeneous models (e.g., different grids, equations, dimensions, physics, surrogate and reduced-order models). While computational efficiency is key in this context, multi-output strategies in multilevel/multifidelity methods are either sub-optimal or non-existent. In this paper we extend multilevel best linear unbiased estimators (MLBLUE) to multi-output forward UQ problems and we present new semidefinite programming formulations for their optimal setup. Not only do these formulations yield the optimal number of samples required, but also the optimal selection of low-fidelity models to use. While existing MLBLUE approaches are single-output only and require a non-trivial nonlinear optimization procedure, the new multi-output formulations can be solved reliably and efficiently. We demonstrate the efficacy of the new methods and formulations in practical UQ problems with model heterogeneity.Comment: 22 pages, 5 figures, 3 table

    Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)

    Full text link
    Multifidelity simulation methodologies are often used in an attempt to judiciously combine low-fidelity and high-fidelity simulation results in an accuracy-increasing, cost-saving way. Candidates for this approach are simulation methodologies for which there are fidelity differences connected with significant computational cost differences. Physics-informed Neural Networks (PINNs) are candidates for these types of approaches due to the significant difference in training times required when different fidelities (expressed in terms of architecture width and depth as well as optimization criteria) are employed. In this paper, we propose a particular multifidelity approach applied to PINNs that exploits low-rank structure. We demonstrate that width, depth, and optimization criteria can be used as parameters related to model fidelity, and show numerical justification of cost differences in training due to fidelity parameter choices. We test our multifidelity scheme on various canonical forward PDE models that have been presented in the emerging PINNs literature

    Multifidelity domain-aware learning for the design of re-entry vehicles

    Get PDF
    The multidisciplinary design optimization (MDO) of re-entry vehicles presents many challenges associated with the plurality of the domains that characterize the design problem and the multi-physics interactions. Aerodynamic and thermodynamic phenomena are strongly coupled and relate to the heat loads that affect the vehicle along the re-entry trajectory, which drive the design of the thermal protection system (TPS). The preliminary design and optimization of re-entry vehicles would benefit from accurate high-fidelity aerothermodynamic analysis, which are usually expensive computational fluid dynamic simulations. We propose an original formulation for multifidelity active learning that considers both the information extracted from data and domain-specific knowledge. Our scheme is developed for the design of re-entry vehicles and is demonstrated for the case of an Orion-like capsule entering the Earth atmosphere. The design process aims to minimize the mass of propellant burned during the entry maneuver, the mass of the TPS, and the temperature experienced by the TPS along the re-entry. The results demonstrate that our multifidelity strategy allows to achieve a sensitive improvement of the design solution with respect to the baseline. In particular, the outcomes of our method are superior to the design obtained through a single-fidelity framework, as a result of the principled selection of a limited number of high-fidelity evaluations

    Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry

    Full text link
    We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold. The estimator fuses samples from a hierarchy of data sources of differing fidelities and costs for variance reduction while guaranteeing definiteness, in contrast with previous approaches. The new estimator makes covariance estimation tractable in applications where simulation or data collection is expensive; to that end, we develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget. Guaranteed definiteness is crucial to metric learning, data assimilation, and other downstream tasks. Evaluations of our approach using data from physical applications (heat conduction, fluid dynamics) demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.Comment: To appear at the International Conference on Machine Learning (ICML) 202

    Kontextsensitive Modellhierarchien für Quantifizierung der höherdimensionalen Unsicherheit

    Get PDF
    We formulate four novel context-aware algorithms based on model hierarchies aimed to enable an efficient quantification of uncertainty in complex, computationally expensive problems, such as fluid-structure interaction and plasma microinstability simulations. Our results show that our algorithms are more efficient than standard approaches and that they are able to cope with the challenges of quantifying uncertainty in higher-dimensional, complex problems.Wir formulieren vier kontextsensitive Algorithmen auf der Grundlage von Modellhierarchien um eine effiziente Quantifizierung der Unsicherheit bei komplexen, rechenintensiven Problemen zu ermöglichen, wie Fluid-Struktur-Wechselwirkungs- und Plasma-Mikroinstabilitätssimulationen. Unsere Ergebnisse zeigen, dass unsere Algorithmen effizienter als Standardansätze sind und die Herausforderungen der Quantifizierung der Unsicherheit in höherdimensionalen, komplexen Problemen bewältigen können

    Multi-Fidelity Gaussian Process Emulation And Its Application In The Study Of Tsunami Risk Modelling

    Get PDF
    Investigating uncertainties in computer simulations can be prohibitive in terms of computational costs, since the simulator needs to be run over a large number of input values. Building a statistical surrogate model of the simulator, using a small design of experiments, greatly alleviates the computational burden to carry out such investigations. Nevertheless, this can still be above the computational budget for many studies. We present a novel method that combines both approaches, the multilevel adaptive sequential design of computer experiments (MLASCE) in the framework of Gaussian process (GP) emulators. MLASCE is based on the two major approaches: efficient design of experiments, such as sequential designs, and combining training data of different degrees of sophistication in a so-called multi-fidelity method, or multilevel in case these fidelities are ordered typically for increasing resolutions. This dual strategy allows us to allocate efficiently limited computational resources over simulations of different levels of fidelity and build the GP emulator. The allocation of computational resources is shown to be the solution of a simple optimization problem in a special case where we theoretically prove the validity of our approach. MLASCE is compared with other existing models of multi-fidelity Gaussian process emulation. Gains of orders of magnitudes in accuracy for medium-size computing budgets are demonstrated in numerical examples. MLASCE should be useful in a computer experiment of a natural disaster risk and more than a mere tool for calculating the scale of natural disasters. To show MLASCE meets this expectation, we propose the first end-to-end example of a risk model for household asset loss due to a possible future tsunami. As a follow-up to this proposed framework, MLASCE provides a reliable statistical surrogate to a realistic tsunami risk assessment under a restricted computational resource and provides accurate and instant predictions of future tsunami risks
    corecore