7 research outputs found

    Connectivity and Data Transmission over Wireless Mobile Systems

    Get PDF
    We live in a world where wireless connectivity is pervasive and becomes ubiquitous. Numerous devices with varying capabilities and multiple interfaces are surrounding us. Most home users use Wi-Fi routers, whereas a large portion of human inhabited land is covered by cellular networks. As the number of these devices, and the services they provide, increase, our needs in bandwidth and interoperability are also augmented. Although deploying additional infrastructure and future protocols may alleviate these problems, efficient use of the available resources is important. We are interested in the problem of identifying the properties of a system able to operate using multiple interfaces, take advantage of user locations, identify the users that should be involved in the routing, and setup a mechanism for information dissemination. The challenges we need to overcome arise from network complexity and heterogeneousness, as well as the fact that they have no single owner or manager. In this thesis I focus on two cases, namely that of utilizing "in-situ" WiFi Access Points to enhance the connections of mobile users, and that of establishing "Virtual Access Points" in locations where there is no fixed roadside equipment available. Both environments have attracted interest for numerous related works. In the first case the main effort is to take advantage of the available bandwidth, while in the second to provide delay tolerant connectivity, possibly in the face of disasters. Our main contribution is to utilize a database to store user locations in the system, and to provide ways to use that information to improve system effectiveness. This feature allows our system to remain effective in specific scenarios and tests, where other approaches fail

    Dynamic power allocation and routing for satellite and wireless networks with time varying channels

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Includes bibliographical references (p. 283-295).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Satellite and wireless networks operate over time varying channels that depend on attenuation conditions, power allocation decisions, and inter-channel interference. In order to reliably integrate these systems into a high speed data network and meet the increasing demand for high throughput and low delay, it is necessary to develop efficient network layer strategies that fully utilize the physical layer capabilities of each network element. In this thesis, we develop the notion of network layer capacity and describe capacity achieving power allocation and routing algorithms for general networks with wireless links and adaptive transmission rates. Fundamental issues of delay, throughput optimality, fairness, implementation complexity, and robustness to time varying channel conditions and changing user demands are discussed. Analysis is performed at the packet level and fully considers the queueing dynamics in systems with arbitrary, potentially bursty, arrival processes. Applications of this research are examined for the specific cases of satellite networks and ad-hoc wireless networks. Indeed, in Chapter 3 we consider a multi-beam satellite downlink and develop a dynamic power allocation algorithm that allocates power to each link in reaction to queue backlog and current channel conditions. The algorithm operates without knowledge of the arriving traffic or channel statistics, and is shown to achieve maximum throughput while maintaining average delay guarantees. At the end of Chapter 4, a crosslinked collection of such satellites is considered and a satellite separation principle is developed, demonstrating that joint optimal control can be implemented with separate algorithms for the downlinks and crosslinks.(cont.) Ad-hoc wireless networks are given special attention in Chapter 6. A simple cell- partitioned model for a mobile ad-hoc network with N users is constructed, and exact expressions for capacity and delay are derived. End-to-end delay is shown to be O(N), and hence grows large as the size of the network is increased. To reduce delay, a transmission protocol which sends redundant packet information over multiple paths is developed and shown to provide O(vN) delay at the cost of reducing throughput. A fundamental rate- delay tradeoff curve is established, and the given protocols for achieving O(N) and O(vN) delay are shown to operate on distinct boundary points of this curve. In Chapters 4 and 5 we consider optimal control for a general time-varying network. A cross-layer strategy is developed that stabilizes the network whenever possible, and makes fair decisions about which data to serve when inputs exceed capacity. The strategy is decoupled into separate algorithms for dynamic flow control, power allocation, and routing, and allows for each user to make greedy decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimally fair operating point that is achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an end-to-end delay increase for data that is served by the network.by Michael J. Neely.Ph.D

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore