5,233 research outputs found

    Logic Programming approaches for routing fault-free and maximally-parallel Wavelength Routed Optical Networks on Chip (Application paper)

    Get PDF
    One promising trend in digital system integration consists of boosting on-chip communication performance by means of silicon photonics, thus materializing the so-called Optical Networks-on-Chip (ONoCs). Among them, wavelength routing can be used to route a signal to destination by univocally associating a routing path to the wavelength of the optical carrier. Such wavelengths should be chosen so to minimize interferences among optical channels and to avoid routing faults. As a result, physical parameter selection of such networks requires the solution of complex constrained optimization problems. In previous work, published in the proceedings of the International Conference on Computer-Aided Design, we proposed and solved the problem of computing the maximum parallelism obtainable in the communication between any two endpoints while avoiding misrouting of optical signals. The underlying technology, only quickly mentioned in that paper, is Answer Set Programming (ASP). In this work, we detail the ASP approach we used to solve such problem. Another important design issue is to select the wavelengths of optical carriers such that they are spread across the available spectrum, in order to reduce the likelihood that, due to imperfections in the manufacturing process, unintended routing faults arise. We show how to address such problem in Constraint Logic Programming on Finite Domains (CLP(FD)). This paper is under consideration for possible publication on Theory and Practice of Logic Programming.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 pages, LaTeX, 5 figure

    Semiconductor optical amplifiers: performance and applications in optical packet switching [Invited]

    Get PDF
    Semiconductor optical amplifiers (SOAs) are a versatile core technology and the basis for the implementation of a number of key functionalities central to the evolution of highly wavelength-agile all-optical networks. We present an overview of the state of the art of SOAs and summarize a range of applications such as power boosters, preamplifiers, optical linear (gain-clamped) amplifiers, optical gates, and modules based on the hybrid integration of SOAs to yield high-level functionalities such as all-optical wavelength converters/regenerators and small space switching matrices. Their use in a number of proposed optical packet switching situations is also highlighted

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme

    Unidirectional Quorum-based Cycle Planning for Efficient Resource Utilization and Fault-Tolerance

    Full text link
    In this paper, we propose a greedy cycle direction heuristic to improve the generalized R\mathbf{R} redundancy quorum cycle technique. When applied using only single cycles rather than the standard paired cycles, the generalized R\mathbf{R} redundancy technique has been shown to almost halve the necessary light-trail resources in the network. Our greedy heuristic improves this cycle-based routing technique's fault-tolerance and dependability. For efficiency and distributed control, it is common in distributed systems and algorithms to group nodes into intersecting sets referred to as quorum sets. Optimal communication quorum sets forming optical cycles based on light-trails have been shown to flexibly and efficiently route both point-to-point and multipoint-to-multipoint traffic requests. Commonly cycle routing techniques will use pairs of cycles to achieve both routing and fault-tolerance, which uses substantial resources and creates the potential for underutilization. Instead, we use a single cycle and intentionally utilize R\mathbf{R} redundancy within the quorum cycles such that every point-to-point communication pairs occur in at least R\mathbf{R} cycles. Without the paired cycles the direction of the quorum cycles becomes critical to the fault tolerance performance. For this we developed a greedy cycle direction heuristic and our single fault network simulations show a reduction of missing pairs by greater than 30%, which translates to significant improvements in fault coverage.Comment: Computer Communication and Networks (ICCCN), 2016 25th International Conference on. arXiv admin note: substantial text overlap with arXiv:1608.05172, arXiv:1608.05168, arXiv:1608.0517

    Analysis of resource sharing in transparent networks

    Get PDF
    Transparent optical networking promises a cost-efficient solution for future core and metro networks because of the efficacy of switching high-granularity trunk traffic without opto-electronic conversion. Network availability is an important performance parameter for network operators, who are incorporating protection and restoration mechanisms in the network to achieve competitive advantages. This paper focuses on the reduction in Capital Expenditures (CapEx) expected from implementing sharing of backup resources in path-protected transparent networks. We dimension a nationwide network topology for different protection mechanisms using transparent and opaque architectures. We investigate the CapEx reductions obtained through protection sharing on a population of 1000 randomly generated biconnected planar topologies with 14 nodes. We show that the gain for transparent networks is heavily dependent on the offered load, with almost no relative gain for low load (no required parallel line systems). We also show that for opaque networks the CapEx reduction through protection sharing is independent of the traffic load and shows only a small dependency on the number of links in the network. The node CapEx reduction for high load (relative to the number of channels in a line system) is comparable to the CapEx reduction in opaque OTN systems. This is rather surprising as in OTN systems the number of transceivers and linecards and the size of the OTN switching matrix all decrease, while in transparent networks only the degree of the ROADM (number and size of WSSs in the node) decreases while the number of transponders remains the same

    Methods and problems of wavelength-routing in all-optical networks

    Get PDF
    We give a survey of recent theoretical results obtained for wavelength-routing in all-optical networks. The survey is based on the previous survey in [Beauquier, B., Bermond, J-C., Gargano, L., Hell, P., Perennes, S., Vaccaro, U.: Graph problems arising from wavelength-routing in all-optical networks. In: Proc. of the 2nd Workshop on Optics and Computer Science, part of IPPS'97, 1997]. We focus our survey on the current research directions and on the used methods. We also state several open problems connected with this line of research, and give an overview of several related research directions
    corecore