3 research outputs found

    All-optical routing functionalities

    Get PDF
    Doutoramento em Engenharia EletrotécnicaAll-optical solutions for switching and routing packet-based traffic are crucial for realizing a truly transparent network. To meet the increasing requirements for higher bandwidth, such optical packet switched networks may require the implementation of digital functions in the physical layer. This scenario stimulated us to research and develop innovative high-speed all-optical storage memories, focusing mainly on bistables whose state switching is triggered by a pulsed clock signal. In clocked devices, a synchronization signal is responsible for controlling the enabling of the bistable. This thesis also presents novel solutions to implement optical logic gates, which are basic building blocks of any processing system and a fundamental element for the development of complex processing functionalities. Most of the proposed schemes developed in this work are based on SOA-MZI structures due to their inherent characteristics such as, high extinction ratio, high operation speed, high integration capability and compactness. We addressed the experimental implementation of an all-optical packet routing scheme, with contention resolution capability, using interconnected SOAMZIs. The impact on the system performance of the reminiscent power of the blocked packets, from the non ideal switching performed by the SOA-MZIs, was also assessed.As soluções totalmente óticas para a comutação e encaminhamento de pacotes de tráfego são cruciais para a realização de uma rede verdadeiramente transparente. Para atender às exigências crescentes de maior largura de banda, tais redes de comutação de pacotes óticos exigem a implementação de funções digitais na camada física. Este cenário estimulou-nos a investigar e a desenvolver memórias totalmente óticas, focando-nos principalmente na implementação de flip-flops óticos síncronos, cujo estado de comutação é accionado por um sinal de relógio. Esta tese também apresenta novas soluções para implementar portas lógicas óticas, visto estas serem um elemento fundamental para o desenvolvimento de funcionalidades complexas de processamento. A maioria dos esquemas propostos neste trabalho são baseados em estruturas interferométricas activas Mach-Zehnder (SOA-MZI) devido às suas características intrínsecas, nomeadamente, razão de extinção elevada bem como elevada capacidade de integração. A implementação experimental de um sistema de encaminhamento de pacotes totalmente ótico foi realizada usando cascatas de SOA-MZIs. O impacto da potência residual, devido à comutação não ideal dos SOA-MZIs, foi também analisado

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Analysis and optimisation of semiconductor reflective modulators for optical networks

    Get PDF
    Reflective modulators based on the combination of an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) are attractive devices for applications in long reach carrier distributed passive optical networks (PONs) due to the gain provided by the SOA and the high speed and low chirp modulation of the EAM. Integrated R-EAM-SOAs have experimentally shown two unexpected and unintuitive characteristics which are not observed in a single pass transmission SOA: the clamping of the output power of the device around a maximum value and low patterning distortion despite the SOA being in a regime of gain saturation. In this thesis a detailed analysis is carried out using both experimental measurements and modelling in order to understand these phenomena. For the first time it is shown that both the internal loss between SOA and R-EAM and the SOA gain play an integral role in the behaviour of gain saturated R-EAM-SOAs. Internal loss and SOA gain are also optimised for use in a carrier distributed PONs in order to access both the positive effect of output power clamping, and hence upstream dynamic range reduction, combined with low patterning operation of the SOA Reflective concepts are also gaining interest for metro transport networks and short reach, high bit rate, inter-datacentre links. Moving the optical carrier generation away from the transmitter also has potential advantages for these applications as it avoids the need for cooled photonics being placed directly on hot router line-cards. A detailed analysis is carried out in this thesis on a novel colourless reflective duobinary modulator, which would enable wavelength flexibility in a power-efficient reflective metro node
    corecore