2,043 research outputs found

    Exploration of Ring Oscillator Based Temperature Sensors Network Accuracy on FPGA

    Get PDF
    During the last decades, technology scaling in reconfigurable logic devices enabled implementing complicated designs which results in higher power density and on-chip temperature. Since higher operating temperature of chips is a critical problem in electronics devices, thermal management techniques are highly required. To provide a thermal map of reconfigurable logic devices, a network of sensors is needed. In this work, a ring-oscillator-based temperature sensor is used to create a sensor network. Then, a design space exploration is done among several sensor networks with the various sensor configurations including different ring oscillator length, the number of sensors in the examined network and various sampling time. We propose three criteria for exploring and comparing the efficiency of sensors network based on the thermal overhead and also measurement accuracy and precision among plenty of configurations on the Virtex-6 FPGA

    A self-timed multipurpose delay sensor for field programmable gate arrays (FPGAs)

    Get PDF
    This paper presents a novel self-timed multi-purpose sensor especially conceived for Field Programmable Gate Arrays (FPGAs). The aim of the sensor is to measure performance variations during the life-cycle of the device, such as process variability, critical path timing and temperature variations. The proposed topology, through the use of both combinational and sequential FPGA elements, amplifies the time of a signal traversing a delay chain to produce a pulse whose width is the sensor’s measurement. The sensor is fully self-timed, avoiding the need for clock distribution networks and eliminating the limitations imposed by the system clock. One single off- or on-chip time-to-digital converter is able to perform digitization of several sensors in a single operation. These features allow for a simplified approach for designers wanting to intertwine a multi-purpose sensor network with their application logic. Employed as a temperature sensor, it has been measured to have an error of ±0.67 °C, over the range of 20–100 °C, employing 20 logic elements with a 2-point calibration

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    High-Performance Silicon Nanowire Electronics

    Get PDF
    This thesis explores 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications via the fabrication and testing of SiNW-based ring oscillators. Both SiNW surface treatments and dielectric annealing are reported for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV), high carrier mobilities (~269 cm2/V•s), and low subthreshold swing (~80 mV/dec). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs is explored as well. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. A set of novel charge-trap non-volatile memory devices based on high-performance SiNW FETs are well investigated. These memory devices integrate Fe2O3 quantum dots (FeO QDs) as charge storage elements. A template-assisted assembly technique is used to align FeO QDs into a close-packed, ordered matrix within the trenches that separate highly aligned SiNWs, and thus store injected charges. A Fowler-Nordheim tunneling mechanism describes both the program and erase operations. The memory prototype demonstrates promising characteristics in terms of large threshold voltage shift (~1.3 V) and long data retention time (~3 × 106 s), and also allows for key components to be systematically varied. For example, varying the size of the QDs indicates that larger diameter QDs exhibit a larger memory window, suggesting the QD charging energy plays an important role in the carrier transport. The device temperature characteristics reveal an optimal window for device performance between 275K and 350K. The flexibility of integrating the charge-trap memory devices with the SiNW logic devices offers a low-cost embedded non-volatile memory solution. A building block for a SiNW-based field-programmable gate array (FPGA) is proposed in the future work.</p

    Delay characterization in FPGA-based reconfigurable systems

    Get PDF
    Runtime reconfigurable architectures accelerate the operation of a standard processor core by hardware accelerators implemented in Field Programmable Gate Arrays (FPGAs). Partial runtime reconfiguration allows the hardware accelerators to efficiently adapt to different computational tasks dynamically. Nowadays, the FPGAs from major vendors, such as Xilinx and Altera, support this feature, including the Xilinx Virtex-5 FPGA family which is the implementation platform of this work. Manufactured at 28 nm scaled technological node or lower, concerns rise about the impact of aging-related failure mechanisms on the modern generations of FPGAs. To detect degradation in the reconfigurable gate arrays, dedicated on- and offline test methods must be employed in the field. Design for dependability requires that the degradation is detected and localized, so that the degraded logic elements will not be used as a first choice in the reconfiguration. This thesis presents the development and the evaluation of a delay characterization method for FPGA CLBs which comprise most of the FPGA logic elements. The purpose of FPGA delay characterization method in this work is to detect and localize the delay variance. This delay variance information may be used for achieving a speed optimized reconfiguration for a FPGA-based runtime system. Different delay characterization methods have been studied in this thesis for determining a suitable method to be implemented in the partial reconfigurable system. The delay characterization is performed in a part of area in the FPGA before a module is placed in this area to avoid the degraded portion. This thesis uses low level hardware description language to generate the fine-grained measurement units which can cover the target area. VHDL is used to generate the test wrapper, control circuit, and the circuit for communicating between the FPGA and the workstation. Several measurement techniques are used to evaluate the accuracy of the delay characterization method. Additionally, this thesis evaluates the temperature influence on the delay characterization. The results show that this delay characterization method can compare the speed of logic elements in the partial runtime reconfiguration area with high accuracy. The degradation can be detected and localized. The results also show that this method can be adapted to different size and location, fitting in the partial runtime reconfigurable design. Twelve configurations are required to have a full coverage of all the CLBs in the area under test

    An FPGA Noise Resistant Digital Temperature Sensor with Auto Calibration

    Get PDF
    In recent years, thermal sensing in digital devices has become increasingly important. From a security perspective, new thermal-based attacks have revealed vulnerabilities in digital devices. Traditional temperature sensors using analog-to-digital converters consume significant power and are not conducive to rapid development. As a result, there has been an escalating demand for low cost, low power digital temperature sensors that can be seamlessly integrated onto digital devices. This research seeks to create a modular Field Programmable Gate Array digital temperature sensor with auto one-point calibration to eliminate the excessive costs and time associated with calibrating existing digital temperature sensors. In addition, to support the auxiliary protection role, the sensor is evaluated alongside a RSA circuit implemented on the same chip, with methods developed to mitigate noise and power fluctuations introduced by the main circuit. The result is a digital temperature sensor resistant to noise and suitable for quick mass deployment in digital devices

    Producing Random Bits with Delay-Line Based Ring Oscillators

    Get PDF
    One of the sources of randomness for a random bit generator (RBG) is jitter present in rectangular signals produced by ring oscillators (ROs). This paper presents a novel approach for the design of delays used in these oscillators. We suggest using delay elements made on carry4 primitives instead of series of inverters or latches considered in the literature. It enables the construction of many high frequency ring oscillators with different nominal frequencies in the same field programmable gate array (FPGA). To assess the unpredictability of bits produced by RO-based RBG, the restarts mechanism, proposed in earlier papers, was used. The output sequences pass all NIST 800-22 statistical tests for smaller number of ring oscillators than the constructions described in the literature. Due to the number of ROs with different nominal frequencies and the method of construction of carry4 primitives, it is expected that the proposed RBG is more robust to cryptographic attacks than RBGs using inverters or latches as delay element

    The Goldstone solar system radar: A science instrument for planetary research

    Get PDF
    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided
    corecore