32 research outputs found

    Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation

    Get PDF
    We establish experimentally the suitability of an all-silicon optical modulator to support future ultra-high-capacity coherent optical transmission links beyond 400 Gb/s. We present single-carrier data transmission from 400 Gb/s to 600 Gb/s using an all-silicon IQ modulator produced with a generic foundry process. The operating point of the silicon photonic transmitter is carefully optimized to find the best efficiency bandwidth trade-off. We present a methodology to split pre-compensation between digital and optical stages. For the 400 Gb/s transmission, we achieved 60 Gbaud dual-polarization (DP)-16QAM, reaching a distance of 1,520 km. Transmission of 500 Gb/s was further tested using 75 Gbaud 16QAM and 60 Gbaud 32QAM, reaching 1,120 km and 480 km, respectively. We finally demonstrated 72 Gbaud DP-32QAM (720 Gb/s) transmitted over 160 km and 84 Gbaud DP-16QAM (672 Gb/s) transmitted over 720 km, meeting the threshold for 20% forward error correction overhead and achieving net rates of 600 Gb/s and 576 Gb/s, respectively. To the best of our knowledge, these are the highest baud-rate coherent transmission results achieved using an all-silicon IQ modulator. We have demonstrated that we can reap the myriad advantages of SiP integration for transmission at extreme bit rates

    Transmission of 120 Gbaud QAM with an all-silicon segmented modulator

    Get PDF
    Segmenting a silicon modulator can substantially increase its electro-optic bandwidth without sacrificing modulation efficiency. We demonstrate a segmented silicon IQ modulator and experimentally explore both modulator design and operating point to optimize systems trade-offs in coherent detection. An electro–optic bandwidth of greater than 40 GHz is measured for a 4-mm-long segment, and greater than 60 GHz for a 2-mmlong segment. We evaluate optical transmission experimentally at 120 Gbaud for 16-ary quadrature amplitude modulation (QAM) and 32QAM. The segments are operated in tandem with identical data at each segment. We present an experimental method to align data timing between the segments. Through the optimization of segment biasing and linear compensation, we have achieved a bit error rate (BER) of 16QAM well below the 20% forward error correction (FEC) threshold (2 × 10−2 ). Adding nonlinear pre-compensation allows for 32QAM with a BER below the 24% FEC threshold (4.5 × 10−2 ), enabling a net rate of 483 Gbs per polarization. The modulator can also be operated as an optical digital analogy converter for complex optical signal generation, for which 100 Gbs is achieved for a proof of concept

    Neural networks for optical channel equalization in high speed communication systems

    Get PDF
    La demande future de bande passante pour les donnĂ©es dĂ©passera les capacitĂ©s des systĂšmes de communication optique actuels, qui approchent de leurs limites en raison des limitations de la bande passante Ă©lectrique des composants de l’émetteur. L’interfĂ©rence intersymbole (ISI) due Ă  cette limitation de bande est le principal facteur de dĂ©gradation pour atteindre des dĂ©bits de donnĂ©es Ă©levĂ©s. Dans ce mĂ©moire, nous Ă©tudions plusieurs techniques de rĂ©seaux neuronaux (NN) pour combattre les limites physiques des composants de l’émetteur pilotĂ©s Ă  des dĂ©bits de donnĂ©es Ă©levĂ©s et exploitant les formats de modulation avancĂ©s avec une dĂ©tection cohĂ©rente. Notre objectif principal avec les NN comme Ă©galiseurs de canaux ISI est de surmonter les limites des rĂ©cepteurs optimaux conventionnels, en fournissant une complexitĂ© Ă©volutive moindre et une solution quasi optimale. Nous proposons une nouvelle architecture bidirectionnelle profonde de mĂ©moire Ă  long terme (BiLSTM), qui est efficace pour attĂ©nuer les graves problĂšmes d’ISI causĂ©s par les composants Ă  bande limitĂ©e. Pour la premiĂšre fois, nous dĂ©montrons par simulation que notre BiLSTM profonde proposĂ©e atteint le mĂȘme taux d’erreur sur les bits(TEB) qu’un estimateur de sĂ©quence Ă  maximum de vraisemblance (MLSE) optimal pour la modulation MDPQ. Les NN Ă©tant des modĂšles pilotĂ©s par les donnĂ©es, leurs performances dĂ©pendent fortement de la qualitĂ© des donnĂ©es d’entrĂ©e. Nous dĂ©montrons comment les performances du BiLSTM profond rĂ©alisable se dĂ©gradent avec l’augmentation de l’ordre de modulation. Nous examinons Ă©galement l’impact de la sĂ©vĂ©ritĂ© de l’ISI et de la longueur de la mĂ©moire du canal sur les performances de la BiLSTM profonde. Nous Ă©tudions les performances de divers canaux synthĂ©tiques Ă  bande limitĂ©e ainsi qu’un canal optique mesurĂ© Ă  100 Gbaud en utilisant un modulateur photonique au silicium (SiP) de 35 GHz. La gravitĂ© ISI de ces canaux est quantifiĂ©e grĂące Ă  une nouvelle vue graphique des performances basĂ©e sur les Ă©carts de performance de base entre les solutions optimales linĂ©aires et non linĂ©aires classiques. Aux ordres QAM supĂ©rieurs Ă  la QPSK, nous quantifions l’écart de performance BiLSTM profond par rapport Ă  la MLSE optimale Ă  mesure que la sĂ©vĂ©ritĂ© ISI augmente. Alors qu’elle s’approche des performances optimales de la MLSE Ă  8QAM et 16QAM avec une pĂ©nalitĂ©, elle est capable de dĂ©passer largement la solution optimale linĂ©aire Ă  32QAM. Plus important encore, l’avantage de l’utilisation de modĂšles d’auto-apprentissage comme les NN est leur capacitĂ© Ă  apprendre le canal pendant la formation, alors que la MLSE optimale nĂ©cessite des informations prĂ©cises sur l’état du canal.The future demand for the data bandwidth will surpass the capabilities of current optical communication systems, which are approaching their limits due to the electrical bandwidth limitations of the transmitter components. Inter-symbol interference (ISI) due to this band limitation is the major degradation factor to achieve high data rates. In this thesis, we investigate several neural network (NN) techniques to combat the physical limits of the transmitter components driven at high data rates and exploiting the advanced modulation formats with coherent detection. Our main focus with NNs as ISI channel equalizers is to overcome the limitations of conventional optimal receivers, by providing lower scalable complexity and near optimal solution. We propose a novel deep bidirectional long short-term memory (BiLSTM) architecture, that is effective in mitigating severe ISI caused by bandlimited components. For the first time, we demonstrate via simulation that our proposed deep BiLSTM achieves the same bit error rate (BER) performance as an optimal maximum likelihood sequence estimator (MLSE) for QPSK modulation. The NNs being data-driven models, their performance acutely depends on input data quality. We demonstrate how the achievable deep BiLSTM performance degrades with the increase in modulation order. We also examine the impact of ISI severity and channel memory length on deep BiLSTM performance. We investigate the performances of various synthetic band-limited channels along with a measured optical channel at 100 Gbaud using a 35 GHz silicon photonic(SiP) modulator. The ISI severity of these channels is quantified with a new graphical view of performance based on the baseline performance gaps between conventional linear and nonlinear optimal solutions. At QAM orders above QPSK, we quantify deep BiLSTM performance deviation from the optimal MLSE as ISI severity increases. While deep BiLSTM approaches the optimal MLSE performance at 8QAM and 16QAM with a penalty, it is able to greatly surpass the linear optimal solution at 32QAM. More importantly, the advantage of using self learning models like NNs is their ability to learn the channel during the training, while the optimal MLSE requires accurate channel state information

    Enhanced PON Infrastructure Enabled by Silicon Photonics

    Get PDF
    Les systĂšmes de courte portĂ©e et de dĂ©tection directe sont le dernier/premier kilomĂštre de la fourniture des services Internet d'aujourd'hui. Deux cas d'application sont abordĂ©s dans cette thĂšse, l'un concerne l'amĂ©lioration des performances des services Internet par la Fibre-To-TheHome ou les rĂ©seaux optiques passifs (PONs). L'autre est le radio access network (RAN) pour le fronthaul. Notre objectif pour RAN est de superposer les signaux 5G sur une infrastructure PON. Nous dĂ©montrons expĂ©rimentalement la gĂ©nĂ©ration d'un signal de rĂ©partition multiplexĂ©e de frĂ©quences orthogonales (OFDM) Ă  bande latĂ©rale unique en utilisant un modulateur IQ sur puce basĂ© sur les photoniques au silicium Ă  micro-anneau. Il s'agit d'une solution Ă  coĂ»t bas permettant aux PONs d'augmenter les dĂ©bits de donnĂ©es grĂące Ă  l'utilisation d'OFDM. Nous avons gĂ©nĂ©rĂ© un signal OFDM Ă  large bande avec un ratio de suppression de bande latĂ©rale de plus de 18 dB. Afin de confirmer la robustesse de la dispersion chromatique (CD), nous transmettons le signal gĂ©nĂ©rĂ© OFDM SSB dans plus de 20 km de fibre de monomode standard. Aucun fading induit par la CD n'a Ă©tĂ© observĂ© et le taux d'erreur sur les bits Ă©tait bon. Nous proposons une solution de photoniques au silicium pour un rĂ©seau optique passif afin de mitiger l'interfĂ©rence de battement signal-signal (SSBI) dans la transmission OFDM, et de rĂ©cupĂ©rer une partie des porteuses de la liaison descendante pour une utilisation dans la liaison montante. Le sous-systĂšme recrĂ©e les interfĂ©rences Ă  une entrĂ©e du dĂ©tecteur Ă©quilibrĂ© ; le signal de donnĂ©es corrompu par SSBI est Ă  la deuxiĂšme entrĂ©e. L'annulation se produit via la soustraction dans la dĂ©tection Ă©quilibrĂ©e. Comme notre solution de photoniques au silicium (SiP) ne peut pas filtrer les signaux idĂ©alement, nous examinons un facteur d'Ă©chelle introduit dans la dĂ©tection Ă©quilibrĂ©e qui peut balancer les effets de filtrage non idĂ©aux. Nous montrons expĂ©rimentalement l'annulation de l'interfĂ©rence donne de bonnes performances mĂȘme avec une porteuse faible, soit pour un ratio porteuse/signal ultra bas de 0 dB. Bien que notre solution soit sensible aux effets de la tempĂ©rature, notre dĂ©monstration expĂ©rimentale montre que le rĂ©glage de la frĂ©quence rĂ©sonante peut dĂ©river jusqu'Ă  12 GHz de la valeur ciblĂ©e et prĂ©senter toujours de bonnes performances. Nous effectuons des simulations extensives du schĂ©ma d'annulation SSBI proposĂ©, et suggĂ©rons une diverse conception polarisĂ©e pour le sous-systĂšme SiP. Nous examinons via la simulation la vulnĂ©rabilitĂ© Ă  la variation de tempĂ©rature et introduisons une nouvelle mĂ©trique de performance : Q-facteur minimum garanti. Nous nous servons de cette mĂ©trique pour Ă©valuer la robustesse d'annulation SSBI contre la dĂ©rive de frĂ©quence induite par les changements de tempĂ©rature. Nous maximisons l'efficacitĂ© spectrale sous diffĂ©rentes conditions du systĂšme en balayant les paramĂštres de conception contrĂŽlables. Finalement, les rĂ©sultats de la simulation du systĂšme fournissent des indications sur la conception du rĂ©sonateur micro-anneau, ainsi que sur le choix de la bande de garde et du format de modulation pour obtenir la plus grande efficacitĂ© spectrale. Finalement, nous nous concentrons sur la superposition des signaux 5G sur une infrastructure PON pour RAN. Nous expĂ©rimentalement validons un sous-systĂšme photonique au silicium conçu pour les rĂ©seaux optiques passifs avec rĂ©utilisation de porteuses et compatibilitĂ© radiosur-fibre (RoF) analogique 5G. Le sous-systĂšme permet la dĂ©tection simultanĂ©e des signaux RoF et du signal PON transmis dans une seule tranche assignĂ©e de longueur d'onde. Tout en maintenant une qualitĂ© suffisante de dĂ©tection des signaux RoF et PON, il n'y a que la puissance minimale de la porteuse qui est extraite pour chaque dĂ©tection, ce qui conserve ainsi la puissance de la porteuse pour la modulation de liaison montante. Nous rĂ©alisons une suppression efficace du signal de liaison descendante en laissant une porteuse propre et forte pour la remodulation. Nous dĂ©montrons expĂ©rimentalement le signal RoF de liaison montante via un modulateur Ă  micro-anneau. Nous avons dĂ©tectĂ© avec succĂšs un signal Ă  large bande de 8 GHz et cinq signaux RoF de 125 MHz simultanĂ©ment. Et deux signaux RoF de 125 MHz sont remodulĂ©s sur la mĂȘme porteuse. Le signal RoF de liaison montante gĂ©nĂ©rĂ© est de 13 dB de plus que les signaux de liaison descendante, ce qui indique leur robustesse contre la diaphonie des signaux rĂ©siduels de la liaison descendante.Short reach, direct detection systems are the last/first mile of today's internet service provision. Two use cases are addressed in this thesis, one is for enhancing performance of Internet services on fiber-to-the-home or passive optical networks (PON). The other is radio access networks (RAN) for fronthaul. Our focus for RAN is to overlay 5G signals on a PON infrastructure. We experimentally demonstrate the generation of a single-sideband orthogonal frequency division multiplexed (OFDM) signal using an on-chip silicon photonics microring-based IQ modulator. This is a low cost solution enabling PONs to increase data rates through the use of OFDM. We generated a wideband OFDM signal with over 18 dB sideband suppression ratio. To confirm chromatic dispersion (CD) robustness, we transmit the generated SSB OFDM signal over 20 km of standard single mode fiber. No CD-induced fading was observed and bit error rate was good. We propose a silicon photonics solution for a passive optical network to mitigate signal-signal beat interference (SSBI) in OFDM transmission, and to recuperate a part of the downlink carrier for use in the uplink. The subsystem recreates the interference at one balanced detector input; the data signal corrupted with SSBI is at the second input. Cancellation occurs via subtraction in the balanced detection. As our silicon photonics (SiP) solution cannot filter the signals ideally, we examine a scaling factor to be introduced to the balanced detection that can trade-off the non-ideal filtering effects. We show experimentally that the interference is cancelled, allowing good performance even with a weak carrier, that is, for ultra low carrier to signal ratio of 0 dB. Although our solution is sensitive to temperature effects, our experimental demonstration shows the tuning of the resonant frequency can drift by as much as 12 GHz from the targeted value and still provide good performance. We perform extensive simulations of the proposed SSBI cancellation scheme, and suggest a polarization diverse design for the SiP subsystem. We examine via simulation the vulnerability to temperature variation and introduce a new performance metric: minimum guaranteed Qfactor. We use this metric to evaluate the SSBI cancellation robustness against the frequency drift induced by temperature changes. We maximize the spectral efficiency under different system conditions by sweeping the controllable design parameters. Finally the system simulation results provide guidance on the microring resonator design, as well as choice of guard band and modulation format to achieve the highest spectral efficiency. Finally, we turn to focus on overlay 5G signals on a PON infrastructure for RAN. We experimentally validate a silicon photonic subsystem designed for passive optical networks with carrier reuse and 5G analog radio-over-fiber (RoF) compatibility. The subsystem enables the simultaneous detection of RoF signals and a PON signal transmitted in a single assigned wavelength slot. While maintaining sufficient quality of RoF and PON signal detection, only the minimum carrier power is leached off for each detection, thus conserving carrier power for uplink modulation. We realize effective downlink signal suppression to leave a clean and strong carrier for remodulation. We demonstrate experimentally the RoF uplink signal via a micro ring modulator. We successfully detected an 8 GHz broadband signal and five 125 MHz RoF signals simultaneously. And two 125 MHz radio over fiber signals are remodulated onto the same carrier. The generated uplink RoF signal is 13 dB over the downlink signals, indicating their robustness against the crosstalk from residual downlink signals

    Transmetteurs photoniques sur silicium pour les transmissions optiques à grande capacité

    Get PDF
    Les applications exigeant des trĂšs nombreuses donnĂ©es (mĂ©dias sociaux, diffusion vidĂ©o en continu, mĂ©gadonnĂ©es, etc.) se dĂ©veloppent Ă  un rythme rapide, ce qui nĂ©cessite de plus en plus de liaisons optiques ultra-rapides. Ceci implique le dĂ©veloppment des transmetteurs optiques intĂ©grĂ©s et Ă  bas coĂ»t et plus particulirement en photonique sur silicium en raison de ses avantages par rapport aux autres technologies (LiNbO3 et InP), tel que la compatibilitĂ© avec le procĂ©dĂ© de fabrication CMOS. Les modulateurs optoĂ©lectronique sont un Ă©lĂ©ment essentiel dans la communication op-tique. Beaucoup de travaux de recherche sont consacrĂ©es au dĂ©veloppement de dispositifs optiques haut dĂ©bit efficaces. Cependant, la conception de modulateurs en photonique sur sili-cium (SiP) haut dĂ©bit est diffcile, principalement en raison de l'absence d'effet Ă©lectro-optique intrinsĂšque dans le silicium. De nouvelles approches et de architectures plus performances doivent ĂȘtre dĂ©veloppĂ©es afin de satisfaire aux critĂšres rĂ©liĂ©s au systĂšme d'une liaison optique aux paramĂštres de conception au niveau du dispositif integrĂ©. En outre, la co-conception de circuits integrĂ©s photoniques sur silicium et CMOS est cruciale pour atteindre tout le potentiel de la technologie de photonique sur silicium. Ainsi cette thĂšse aborde les dĂ©fits susmentionnĂ©s. Dans notre premiĂšre contribution, nous prĂ©esentons pour la premiĂšre fois un Ă©metteur phononique sur silicium PAM-4 sans utiliser un convertisseur numĂ©rique analog (DAC)qui comprend un modulateur Mach Zehnder Ă  Ă©lectrodes segmentĂ©es SiP (LES-MZM) implĂ©mentĂ© dans un procĂ©dĂ© photonique sur silicium gĂ©nĂ©rique avec jonction PN latĂ©rale et son conducteur CMOS intĂ©grĂ©. Des dĂ©bits allant jusqu'Ă  38 Gb/s/chnnel sont obtenus sans utili-ser un convertisseur numĂ©rique-analogique externe. Nous prĂ©sentons Ă©galement une nouvelle procĂ©dure de gĂ©nĂ©ration de dĂ©lai dans le excitateur de MOS complĂ©mentaire. Un effet, un dĂ©lai robuste aussi petit que 7 ps est gĂ©nĂ©rĂ© entre les canaux de conduite. Dans notre deuxiĂšme contribution, nous prĂ©sentons pour la premiĂšre fois un nouveau fac-teur de mĂ©rite (FDM) pour les modulateurs SiP qui inclut non seulement la perte optique et l'efficacitĂ© (comme les FDMs prĂ©cĂ©dents), mais aussi la bande passante Ă©lectro-optique du modulateur SiP (BWEO). Ce nouveau FDM peut faire correspondre les paramĂštres de conception physique du modulateur SiP Ă  ses critĂšres de performance au niveau du systĂšme, facilitant Ă  la fois la conception du dispositif optique et l'optimisation du systĂšme. Pour la premiĂšre fois nous dĂ©finissons et utilisons la pĂ©nalitĂ© de puissance du modulateur (MPP) induite par le modulateur SiP pour Ă©tudier la dĂ©gradation des performances au niveau du systĂšme induite par le modulateur SiP dans une communication Ă  base de modulation d'amplitude d'impulsion optique. Nous avons dĂ©veloppĂ© l'Ă©quation pour MPP qui inclut les facteurs de limitation du modulateur (perte optique, taux d'extinction limitĂ© et limitation de la bande passante Ă©lectro-optique). Enfin, dans notre troisiĂšme contribution, une nouvelle mĂ©thodologie de conception pour les modulateurs en SiP intĂ©grĂ© Ă  haute dĂ©bit est prĂ©sentĂ©e. La nouvelle approche est basĂ©e sur la minimisation de la MPP SiP en optimisant l'architecture du modulateur et le point de fonctionnement. Pour ce processus, une conception en longueur unitaire du modulateur Mach Zehnder (MZM) peut ĂȘtre optimisĂ©e en suivant les spĂ©cifications du procĂ©dĂ© de fabrication et les rĂšgles de conception. Cependant, la longueur et la tension de biais du d'Ă©phaseur doivent ĂȘtre optimisĂ©es ensemble (par exemple selon vitesse de transmission et format de modulation). Pour vĂ©rifier l'approche d'optimisation proposĂ©e expĂ©rimentale mont, a conçu un modulateur photonique sur silicium en phase / quadrature de phase (IQ) ciblant le format de modulation 16-QAM Ă  60 Gigabaud. Les rĂ©sultats expĂ©rimentaux prouvent la fiabilitĂ© de la mĂ©thodologie proposĂ©e. D'ailleurs, nous avons augmentĂ© la vitesse de transmission jusqu'Ă  70 Gigabaud pour tester la limite de dĂ©bit au systĂšme. Une transmission de donnĂ©es dos Ă  dos avec des dĂ©bits binaires de plus de 233 Gigabit/s/channel est observĂ©e. Cette mĂ©thodologie de conception ouvre ainsi la voie Ă  la conception de la prochaine gĂ©nĂ©ration d'Ă©metteurs intĂ©grĂ©s Ă  double polarisation 400+ Gigabit/s/channel.Data-hungry applications (social media, video streaming, big data, etc.) are expanding at a fast pace, growing demand for ultra-fast optical links. This driving force reveals need for low-cost, integrated optical transmitters and pushes research in silicon photonics because of its advantages over other platforms (i.e. LiNbO3 and InP), such as compatibility with CMOS fabrication processes, the ability of on-chip polarization manipulation, and cost effciency. Electro-optic modulators are an essential component of optical communication links and immense research is dedicated to developing effcient high-bitrate devices. However, the design of high-capacity Silicon Photonics (SiP) transmitters is challenging, mainly due to lack of inherent electro-optic effect in silicon. New design methodologies and performance merits have to be developed in order to map the system-level criteria of an optical link to the design parameters in device-level. In addition, co-design of silicon photonics and CMOS integrated circuits is crucial to reveal the full potential of silicon photonics. This thesis addresses the aforementioned challenges. In our frst contribution, for the frst time we present a DAC-less PAM-4 silicon photonic transmitter that includes a SiP lumped-element segmented-electrode Mach Zehnder modula-tor (LES-MZM) implemented in a generic silicon photonic process with lateral p-n junction and its co-designed CMOS driver. Using post processing, bitrates up to 38 Gb/s/channel are achieved without using an external digital to analog converter. We also presents a novel delay generation procedure in the CMOS driver. A robust delay as small as 7 ps is generated between the driving channels. In our second contribution, for the frst time we present a new figure of merit (FOM) for SiP modulators that includes not only the optical loss and effciency (like the prior FOMs), but also the SiP modulator electro-optic bandwidth ( BWEO). This new FOM can map SiP modulator physical design parameters to its system-level performance criteria, facilitating both device design and system optimization. For the frst time we define and employ the modulator power penalty (MPP) induced by the SiP modulator to study the system level performance degradation induced by SiP modulator in an optical pulse amplitude modulation link. We develope a closed-form equation for MPP that includes the SiP modulator limiting factors (optical loss, limited extinction ratio and electro-optic bandwidth limitation). Finally in our third contribution, we present a novel design methodology for integrated high capacity SiP modulators. The new approach is based on minimizing the power penalty of a SiP modulator (MPP) by optimizing modulator design and bias point. For the given process, a unit-length design of Mach Zehnder modulator (MZM) can be optimized following the process specifications and design rules. However, the length and the bias voltage of the phase shifter must be optimized together in a system context (e.g., baud rate and modulation format). Moreover, to verify the proposed optimization approach in experiment, we design an in-phase/quadrature-phase (IQ) silicon photonic modulator targeting 16-QAM modulation format at 60 Gbaud. Experimental results proves the reliability of our proposed methodology. We further push the baud rate up to 70 Gbaud to examine the capacity boundary of the device. Back to back data transmission with bitrates more than 233 Gb/s/channel are captured. This design methodology paves the way for designing the next generation of integrated dual- polarization 400+ Gb/s/channel transmitters

    Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters

    Get PDF
    Recently, high-performance thin-film lithium niobate optical modulators have emerged that, together with advanced multiplexing technologies, are highly expected to satisfy the ever-growing demand for high-capacity optical interconnects utilizing multiple channels. Accordingly, in this study, a compact lithium-niobate-on-insulator (LNOI) photonic chip was adopted to establish four-channel wavelength-division-multiplexing (WDM) transmitters, comprising four optical modulators based on ultracompact 2 × 2 Fabry-Perot cavities and a four-channel WDM filter based on multimode waveguide gratings. The fabricated chip with four wavelength channels has a total footprint as compact as 0.3 × 2.8 mm2, and exhibits an excess loss of ~0.8 dB as well as low inter-channel crosstalk of < –22 dB. Using this LNOI photonic chip, high-capacity data transmissions of 320 Gbps (4 × 80 Gbps) on-off-keying signals and 400 Gbps (4 × 100 Gbps) four-level pulse amplitude signals were successfully realized with the ultra-low power consumption of 11.9 fJ/bit

    Optical Signal Processing for High-Order Quadrature- Amplitude Modulation Formats

    Get PDF
    In this book chapter, optical signal processing technology, including optical wavelength conversion, wavelength exchange and wavelength multicasting, for phase-noise-sensitive high-order quadrature-amplitude modulation (QAM) signals will be discussed. Due to the susceptibility of high-order QAM signals against phase noise, it is imperative to avoid the phase noise in the optical signal processing subsystems. To design high-performance optical signal processing subsystems, both linear and nonlinear phase noise and distortions are the main concerns in the system design. We will first investigate the effective monitoring approach to optimize the performance of wavelength conversion for avoiding undesired nonlinear phase noise and distortions, and then propose coherent pumping scheme to eliminate the linear phase noise from local pumps in order to realize pump-phase-noise-free wavelength conversion, wavelength exchange and multicasting for high-order QAM signals. All of the discussions are based on experimental investigation

    Silicon photonic mach-zehnder modulator architectures for on chip PAM-4 signal generation and transmission

    Get PDF
    Four level pulse amplitude modulation (PAM-4) has become the modulation format of choice to replace on-off keying (OOK) for the 400 Gb/s short reach optical communications systems. In this manuscript, we investigate the possible modifications to conventional Mach-Zehnder modulator structures to improve the system performance. We present 3 different Silicon photonic Mach-Zehnder modulator architectures for generating PAM-4 in the optical domain using OOK electrical driving signals. We investigate the transfer function and linearity of each modulator, and experimentally compare their PAM-4 generation and transmission performance with and without use of digital signal processing (DSP). We achieve the highest reported PAM-4 generation and transmission without the use of DSP. The power consumption of each modulator is presented, and we experimentally show that multi-electrode Mach-Zehnder modulators provide a clear advantage at higher symbol rates compared to conventional Mach-Zehnder modulators
    corecore