527 research outputs found

    Evaluating pointing errors on ergodic capacity of DF relay-assisted FSO communication systems

    Get PDF
    Ergodic capacity of decode-and-forward (DF) relay-assisted free-space optical (FSO) communication systems when line of sight is available is analyzed over gamma-gamma fading channels with pointing errors. Novel closed-form approximate ergodic capacity expression is obtained in terms of the H-Fox function for a 3-way FSO communication system when the α-μ distribution to efficiently approximate the probability density function (PDF) of the sum of gamma-gamma with pointing errors variates is considered. Moreover, we present a novel asymptotic expression at high signal-to-noise ratio (SNR) for the ergodic capacity of DF relay-assisted FSO systems. The main contribution in this work lies in an in-depth analysis about the impact of pointing errors on the ergodic capacity for cooperative FSO systems. In order to maintain the same performance in terms of capacity, it is corroborated that the presence of pointing errors requires an increase in SNR, which is related to the fraction of the collected power at the receive aperture, i.e. A 0 . Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. The authors wish to acknowledge the financial support given by Spanish MINECO Project TEC2012-32606

    Impact of Pointing Errors on the Performance of Mixed RF/FSO Dual-Hop Transmission Systems

    Full text link
    In this work, the performance analysis of a dual-hop relay transmission system composed of asymmetric radio-frequency (RF)/free-space optical (FSO) links with pointing errors is presented. More specifically, we build on the system model presented in [1] to derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio in terms of the Meijer's G function. We then capitalize on these results to offer new exact closed-form expressions for the higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and the ergodic capacity, all in terms of Meijer's G functions. Our new analytical results were also verified via computer-based Monte-Carlo simulation results.Comment: 6 pages, 3 figure
    • …
    corecore