1,950 research outputs found

    Strong Ramsey Games in Unbounded Time

    Full text link
    For two graphs BB and HH the strong Ramsey game R(B,H)\mathcal{R}(B,H) on the board BB and with target HH is played as follows. Two players alternately claim edges of BB. The first player to build a copy of HH wins. If none of the players win, the game is declared a draw. A notorious open question of Beck asks whether the first player has a winning strategy in R(Kn,Kk)\mathcal{R}(K_n,K_k) in bounded time as nn\rightarrow\infty. Surprisingly, in a recent paper Hefetz et al. constructed a 55-uniform hypergraph H\mathcal{H} for which they proved that the first player does not have a winning strategy in R(Kn(5),H)\mathcal{R}(K_n^{(5)},\mathcal{H}) in bounded time. They naturally ask whether the same result holds for graphs. In this paper we make further progress in decreasing the rank. In our first result, we construct a graph GG (in fact G=K6K4G=K_6\setminus K_4) and prove that the first player does not have a winning strategy in R(KnKn,G)\mathcal{R}(K_n \sqcup K_n,G) in bounded time. As an application of this result we deduce our second result in which we construct a 44-uniform hypergraph GG' and prove that the first player does not have a winning strategy in R(Kn(4),G)\mathcal{R}(K_n^{(4)},G') in bounded time. This improves the result in the paper above. An equivalent formulation of our first result is that the game R(KωKω,G)\mathcal{R}(K_\omega\sqcup K_\omega,G) is a draw. Another reason for interest on the board KωKωK_\omega\sqcup K_\omega is a folklore result that the disjoint union of two finite positional games both of which are first player wins is also a first player win. An amusing corollary of our first result is that at least one of the following two natural statements is false: (1) for every graph HH, R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win; (2) for every graph HH if R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win, then R(KωKω,H)\mathcal{R}(K_\omega\sqcup K_\omega,H) is also a first player win.Comment: 18 pages, 46 figures; changes: fully reworked presentatio

    Strong Ramsey Games in Unbounded Time

    Get PDF
    For two graphs BB and HH the strong Ramsey game R(B,H)\mathcal{R}(B,H) on the board BB and with target HH is played as follows. Two players alternately claim edges of BB. The first player to build a copy of HH wins. If none of the players win, the game is declared a draw. A notorious open question of Beck asks whether the first player has a winning strategy in R(Kn,Kk)\mathcal{R}(K_n,K_k) in bounded time as nn\rightarrow\infty. Surprisingly, in a recent paper Hefetz et al. constructed a 55-uniform hypergraph H\mathcal{H} for which they proved that the first player does not have a winning strategy in R(Kn(5),H)\mathcal{R}(K_n^{(5)},\mathcal{H}) in bounded time. They naturally ask whether the same result holds for graphs. In this paper we make further progress in decreasing the rank. In our first result, we construct a graph GG (in fact G=K6K4G=K_6\setminus K_4) and prove that the first player does not have a winning strategy in R(KnKn,G)\mathcal{R}(K_n \sqcup K_n,G) in bounded time. As an application of this result we deduce our second result in which we construct a 44-uniform hypergraph GG' and prove that the first player does not have a winning strategy in R(Kn(4),G)\mathcal{R}(K_n^{(4)},G') in bounded time. This improves the result in the paper above. An equivalent formulation of our first result is that the game R(KωKω,G)\mathcal{R}(K_\omega\sqcup K_\omega,G) is a draw. Another reason for interest on the board KωKωK_\omega\sqcup K_\omega is a folklore result that the disjoint union of two finite positional games both of which are first player wins is also a first player win. An amusing corollary of our first result is that at least one of the following two natural statements is false: (1) for every graph HH, R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win; (2) for every graph HH if R(Kω,H)\mathcal{R}(K_\omega,H) is a first player win, then R(KωKω,H)\mathcal{R}(K_\omega\sqcup K_\omega,H) is also a first player win.Comment: 17 pages, 48 figures; improved presentation, particularly in section

    Ramsey expansions of metrically homogeneous graphs

    Full text link
    We discuss the Ramsey property, the existence of a stationary independence relation and the coherent extension property for partial isometries (coherent EPPA) for all classes of metrically homogeneous graphs from Cherlin's catalogue, which is conjectured to include all such structures. We show that, with the exception of tree-like graphs, all metric spaces in the catalogue have precompact Ramsey expansions (or lifts) with the expansion property. With two exceptions we can also characterise the existence of a stationary independence relation and the coherent EPPA. Our results can be seen as a new contribution to Ne\v{s}et\v{r}il's classification programme of Ramsey classes and as empirical evidence of the recent convergence in techniques employed to establish the Ramsey property, the expansion (or lift or ordering) property, EPPA and the existence of a stationary independence relation. At the heart of our proof is a canonical way of completing edge-labelled graphs to metric spaces in Cherlin's classes. The existence of such a "completion algorithm" then allows us to apply several strong results in the areas that imply EPPA and respectively the Ramsey property. The main results have numerous corollaries on the automorphism groups of the Fra\"iss\'e limits of the classes, such as amenability, unique ergodicity, existence of universal minimal flows, ample generics, small index property, 21-Bergman property and Serre's property (FA).Comment: 57 pages, 14 figures. Extends results of arXiv:1706.00295. Minor revisio
    corecore