199 research outputs found

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Dielectric Metamaterials with Toroidal Dipolar Response

    Full text link
    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. We show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials macroscopic response. Due to the unique field configuration of the toroidal mode the proposed metamaterials could serve as a platform for sensing, or enhancement of light absorption and optical nonlinearities

    Plasmonics and metamaterials at terahertz frequencies

    Get PDF
    The research presented in this manuscript falls under the framework of metamaterials and plasmonics. It is mainly focused on applications at terahertz (THz) frequencies, a spectral band located between microwaves and infrared. Metamaterials are advanced materials able to synthesize electromagnetic properties hardly found in natural materials by means of engineering their meta-atoms. Metallic inclusions are commonly used in metamaterials design. At low frequency bands such as microwaves and millimeter-waves, metals behave fundamentally differently than at infrared and optics. Plasmonics sets the theory of the interaction processes between electromagnetic radiation and conduction electrons of metals at such high frequencies. The objective of this thesis is to devise, design, analyze and, whenever possible, experimentally realize and measure new metamaterials and plasmonics devices for free-space quasi-optical applications. Particularly, field concentrators in the form of advanced lenses and nanoantennas as well as advanced polarizing devices are targeted. The contributions presented here start from the specific theory of the field and the results are supported by numerical simulations, analytical calculations and/or measurements of real prototypes.Programa Oficial de Doctorado en TecnologĂ­as de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    Generalized homogenization theory and inverse design of periodic electromagnetic metamaterials

    Get PDF
    textArtificial metamaterials composed of specifically designed subwavelength unit cells can support an exotic material response and present a promising future for various microwave, terahertz and optical applications. Metamaterials essentially provide the concept to microscopically manipulate light through their subwavelength inclusions, and the overall structure can be macroscopically treated as homogeneous bulk material characterized by a simple set of constitutive parameters, such as permittivity and permeability. In this dissertation, we present a complete homogenization theory applicable to one-, two- and three-dimensional metamaterials composed of nonconnected subwavelength elements. The homogenization theory provides not only deep insights to electromagnetic wave propagation among metamaterials, but also allows developing a useful and efficient analysis method for engineering metamaterials. We begin the work by proposing a general retrieval procedure to characterize arbitrary subwavelength elements in terms of a polarizability tensor. Based on this system, we may start the macroscopic analysis of metamaterials by analyzing the scattering properties of their microscopic building blocks. For one-dimensional linear arrays, we present the dispersion relations for single and parallel linear chains and study their potential use as sub-diffractive waveguides and leaky-wave antennas. For two-dimensional arrays, we interpret the metasurfaces as homogeneous surfaces and characterize their properties by a complete six-by-six tensorial effective surface susceptibility. This model also offers the possibility to derive analytical transmission and reflection coefficients for metasurfaces composed of arbitrary nonconnected inclusions with TE and TM mutual coupling. For three-dimensional metamaterials, we present a generalized theory to homogenize arrays by effective tensorial permittivity, permeability and magneto-electric coupling coefficients. This model captures comprehensive anisotropic and bianisotropic properties of metamaterials. Based on this theory, we also modify the conventional retrieval method to extract physically meaningful effective parameters of given metamaterials and fundamentally explain the common non-causality issues associated with parameter retrieval. Finally, we conceptually propose an inverse design procedure for three-dimensional metamaterials that can efficiently determine the geometry of the inclusions required to achieve the anomalous properties, such as double-negative response, in the desired frequency regime.Electrical and Computer Engineerin

    Strong magnetic response of submicron Silicon particles in the infrared

    Get PDF
    High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices in the microwave regime. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical materials in these regimes. Here we analyze the dipolar electric and magnetic response of loss-less dielectric spheres made of moderate permittivity materials. For low material refractive index there are no sharp resonances due to strong overlapping between different multipole contributions. However, we find that Silicon particles with refractive index 3.5 and radius approx. 200nm present a dipolar and strong magnetic resonant response in telecom and near-infrared frequencies, (i.e. at wavelengths approx. 1.2-2 micrometer). Moreover, the light scattered by these Si particles can be perfectly described by dipolar electric and magnetic fields, quadrupolar and higher order contributions being negligible.Comment: 10 pages, 5 figure

    Towards all-dielectric metamaterials and nanophotonics

    Get PDF
    We review a new, rapidly developing field of all-dielectric nanophotonics which allows to control both magnetic and electric response of structured matter by engineering the Mie resonances in high-index dielectric nanoparticles. We discuss optical properties of such dielectric nanoparticles, methods of their fabrication, and also recent advances in all-dielectric metadevices including couple-resonator dielectric waveguides, nanoantennas, and metasurfaces

    Polarization State Manipulation of Electromagnetic Waves with Metamaterials and Its Applications in Nanophotonics

    Get PDF
    Polarization state is an important characteristic of electromagnetic waves. The arbitrary control of the polarization state of such wave has attracted great interest in the scientific community because of the wide range of modern optical applications that such control can afford. Recent advances in metamaterials provide an alternative method of realizing arbitrary manipulation of polarization state of electromagnetic waves in nanoscale via ultrathin, miniaturized, and easily integrable designs. In this chapter, we give a review of recent developments on polarization state manipulation of electromagnetic waves in metamaterials and discuss their applications in nanophotonics, such as polarization converter, wavefront controller, information coding, and so on
    • …
    corecore