203 research outputs found

    Alignments with non-overlapping moves, inversions and tandem duplications in O ( n 4) time

    Get PDF
    Sequence alignment is a central problem in bioinformatics. The classical dynamic programming algorithm aligns two sequences by optimizing over possible insertions, deletions and substitutions. However, other evolutionary events can be observed, such as inversions, tandem duplications or moves (transpositions). It has been established that the extension of the problem to move operations is NP-complete. Previous work has shown that an extension restricted to non-overlapping inversions can be solved in O(n 3) with a restricted scoring scheme. In this paper, we show that the alignment problem extended to non-overlapping moves can be solved in O(n 5) for general scoring schemes, O(n 4log n) for concave scoring schemes and O(n 4) for restricted scoring schemes. Furthermore, we show that the alignment problem extended to non-overlapping moves, inversions and tandem duplications can be solved with the same time complexities. Finally, an example of an alignment with non-overlapping moves is provide

    Canonical, Stable, General Mapping using Context Schemes

    Full text link
    Motivation: Sequence mapping is the cornerstone of modern genomics. However, most existing sequence mapping algorithms are insufficiently general. Results: We introduce context schemes: a method that allows the unambiguous recognition of a reference base in a query sequence by testing the query for substrings from an algorithmically defined set. Context schemes only map when there is a unique best mapping, and define this criterion uniformly for all reference bases. Mappings under context schemes can also be made stable, so that extension of the query string (e.g. by increasing read length) will not alter the mapping of previously mapped positions. Context schemes are general in several senses. They natively support the detection of arbitrary complex, novel rearrangements relative to the reference. They can scale over orders of magnitude in query sequence length. Finally, they are trivially extensible to more complex reference structures, such as graphs, that incorporate additional variation. We demonstrate empirically the existence of high performance context schemes, and present efficient context scheme mapping algorithms. Availability and Implementation: The software test framework created for this work is available from https://registry.hub.docker.com/u/adamnovak/sequence-graphs/. Contact: [email protected] Supplementary Information: Six supplementary figures and one supplementary section are available with the online version of this article.Comment: Submission for Bioinformatic

    Detection of Genomic Inversion from Single End Read

    Get PDF
    Structural Variations (SVs) are genomic rearrangements that include both copy-number variants,such as insertion,deletions, duplications and balanced variants like inversion and translocations. These SVs are getting more attentions for research and investigation because of their role on human phenotype, genetic diseases and genomic rearrangements. Evolution of Next-generation Sequencing has provided golden opportunities to investigate these variants and make their wider and clear spectrum in human genome. This investigation includes identification of type of SVs and their breakpoints at base pair level. For their effective identification and breakpoint resolution, many techniques are devised mainly based on paired end read. With relatively low cost and high efficiency different platforms including ION TORRENT, Illumina can generate high throughput Single End reads. In this thesis we provide a novel approach based on Single End reads to detect genomic inversions in human genome. We also compare our approach with existing methods based on paired end reads and show that our approach is competitive in terms of sensitivity and precision at relatively low coverage for detection of breakpoints of genomic inversion

    Algorithms and methods for large-scale genome rearrangements identification

    Get PDF
    Esta tesis por compendio aborda la definición formal de SB, empezando por Pares de Segmentos de alta puntuación (HSP), los cuales son bien conocidos y aceptados. El primer objetivo se centró en la detección de SB como una combinación de HSPs incluyendo repeticiones lo cual incrementó la complejidad del modelo. Como resultado, se obtuvo un método más preciso y que mejora la calidad de los resultados del estado del arte. Este método aplica reglas basadas en la adyacencia de SBs, permitiendo además detectar LSGR e identificarlos como inversiones, translocaciones o duplicaciones, constituyendo un framework capaz de trabajar con LSGR para organismos de un solo cromosoma. Más tarde en un segundo artículo, se utilizó este framework para refinar los bordes de los SBs. En nuestra novedosa propuesta, las repeticiones que flanquean los SB se utilizaron para refinar los bordes explotando la redundancia introducida por dichas repeticiones. Mediante un alineamiento múltiple de estas repeticiones se calculan los vectores de identidad del SB y de la secuencia consenso de las repeticiones alineadas. Posteriormente, una máquina de estados finitos diseñada para detectar los puntos de transición en la diferencia de ambos vectores determina los puntos de inicio y fin de los SB refinados. Este método también se mostró útil a la hora de detectar "puntos de ruptura" (conocidos como break points (BP)). Estos puntos aparecen como la región entre dos SBs adyacentes. El método no fuerza a que el BP sea una región o un punto, sino que depende de los alineamientos de las repeticiones y del SB en cuestión. El método es aplicado en un tercer trabajo, donde se afronta un caso de uso de análisis de metagenomas. Es bien sabido que la información almacenada en las bases de datos no corresponde necesariamente a las muestras no cultivadas contenidas en un metagenoma, y es posible imaginar que la asignación de una muestra de un metagenoma se vea dificultada por un evento reorganizativo. En el articulo se muestra que las muestras de un metagenoma que mapean sobre las regiones exclusivas de un genoma (aquellas que no comparte con otros genomas) respaldan la presencia de ese genoma en el metagenoma. Estas regiones exclusivas son fácilmente derivadas a partir de una comparación múltiple de genomas, como aquellas regiones que no forman parte de ningún SB. Una definición bajo un espacio de comparación múltiple de genomas es más precisa que las definiciones construidas a partir de una comparación de pares, ya que entre otras cosas, permite un refinamiento siguiendo un procedimiento similar al descrito en el segundo artículo (usando SBs, en vez de repeticiones). Esta definición también resuelve la contradicción existente en la definición de puntos de BPs (mencionado en la segunda publicación), por la cual una misma región de un genoma puede ser detectada como BP o formar parte de un SB dependiendo del genoma con el que se compare. Esta definición de SB en comparación múltiple proporciona además información precisa para la reconstrucción de LSGR, con vistas a obtener una aproximación del verdadero ancestro común entre especies. Además, proporciona una solución para el problema de la granularidad en la detección de SBs: comenzamos por SBs pequeños y bien conservados y a través de la reconstrucción de LSGR se va aumentando gradualmente el tamaño de dichos bloques. Los resultados que se esperan de esta línea de trabajo apuntan a una definición de una métrica destinada a obtener distancias inter genómicas más precisas, combinando similaridad entre secuencias y frecuencias de LSGR.Esta tesis es un compendio de tres artículos recientemente publicados en revistas de alto impacto, en los cuales mostramos el proceso que nos ha llevado a proponer la definición de Unidades Elementales de Conservación (regiones conservadas entre genomas que son detectadas después de una comparación múltiple), así como algunas operaciones básicas como inversiones, transposiciones y duplicaciones. Los tres artículos están transversalmente conectados por la detección de Bloques de Sintenia (SB) y reorganizaciones genómicas de gran escala (LSGR) (consultar sección 2), y respaldan la necesidad de elaborar el framework que se describe en la sección "Systems And Methods". De hecho, el trabajo intelectual llevado a cabo en esta tesis y las conclusiones aportadas por las publicaciones han sido esenciales para entender que una definición de SB apropiada es la clave para muchos de los métodos de comparativa genómica. Los eventos de reorganización del ADN son una de las principales causas de evolución y sus efectos pueden ser observados en nuevas especies, nuevas funciones biológicas etc. Las reorganizaciones a pequeña escala como inserciones, deleciones o substituciones han sido ampliamente estudiadas y existen modelos aceptados para detectarlas. Sin embargo, los métodos para identificar reorganizaciones a gran escala aún sufren de limitaciones y falta de precisión, debido principalmente a que no existe todavía una definición de SB aceptada. El concepto de SB hace referencia a regiones conservadas entre dos genomas que guardan el mismo orden y {strand. A pesar de que existen métodos para detectarlos, éstos evitan tratar con repeticiones o restringen la búsqueda centrándose solamente en las regiones codificantes en aras de un modelo más simple. El refinamiento de los bordes de estos bloques es a día de hoy un problema aún por solucionar

    Homoplastic Microinversions and the Avian Tree of Life

    Get PDF
    Background Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions Microinversions can provide valuable phylogenetic information, although power analysis indicates that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted with caution, just as with any other character type. Independent of their use for phylogenetic analyses, microinversions are important because they have the potential to complicate alignment of non-coding sequences. Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active identification of microinversions will prove useful in future phylogenomic studies

    Homoplastic microinversions and the avian tree of life

    Get PDF
    Background: Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasyfree evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results: We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions: Microinversions can provide valuable phylogenetic information, although power analysis indicate

    Graph-based modeling of tandem repeats improves global multiple sequence alignment

    Get PDF
    Tandem repeats (TRs) are often present in proteins with crucial functions, responsible for resistance, pathogenicity and associated with infectious or neurodegenerative diseases. This motivates numerous studies of TRs and their evolution, requiring accurate multiple sequence alignment. TRs may be lost or inserted at any position of a TR region by replication slippage or recombination, but current methods assume fixed unit boundaries, and yet are of high complexity. We present a new global graph-based alignment method that does not restrict TR unit indels by unit boundaries. TR indels are modeled separately and penalized using the phylogeny-aware alignment algorithm. This ensures enhanced accuracy of reconstructed alignments, disentangling TRs and measuring indel events and rates in a biologically meaningful way. Our method detects not only duplication events but also all changes in TR regions owing to recombination, strand slippage and other events inserting or deleting TR units. We evaluate our method by simulation incorporating TR evolution, by either sampling TRs from a profile hidden Markov model or by mimicking strand slippage with duplications. The new method is illustrated on a family of type III effectors, a pathogenicity determinant in agriculturally important bacteria Ralstonia solanacearum. We show that TR indel rate variation contributes to the diversification of this protein famil

    Strukturell variasjon som påvirker genetisk miljøtilpasning i laksefisk

    Get PDF
    Structural variations (SVs), e.g. deletions, insertions, inversions and duplications of sequences, are a major source of genomic variation affecting more base pairs in the genome than single nucleotide polymorphisms (SNPs). Despite their increasingly recognised importance in adaptive evolution and species diversification, SVs are vastly understudied in most species. Long-read sequencing, together with recently developed bioinformatic tools, have provided step-change improvements in the precision and recall of SV detection and allow us to increase the detected SVs manyfold across the species range. In addition, long-reads represent a major shift in our ability to build continuous genome assemblies as fundamental resources for most genome wide studies. The work in this thesis utilises long-read data to generate multiple genome sequences for the two salmonid species Atlantic salmon (Salmo salar) and lake whitefish (Coregonus clupeaformis). We present the first pan-genome for Atlantic salmon, comprising 11 long-read-based assemblies across the species range. Among these, the highest quality genome has 2.55 Gbp assembled into chromosome sequences, 259 Mbp more sequence than in the previous Atlantic salmon reference genome. The genome has a highly improved continuity with contig N50 increasing from 58 kbp to 28.06 Mbp (484-fold). The detection of SVs in these 11 individuals, revealed 1,061,452 SVs, with an average of ~77.4 Mbp of sequence differing per sample. The Atlantic salmon has adapted to different river environment across a large geographical distribution. To investigate genomic variation underlying these adaptations, we associated SVs and environmental data in a dataset of 366 short-read samples genotyped using genome graph analyses. These analyses highlighted multiple SVs contributing to environmental adaptations, including an 18 kbp deletion encompassing a polymorphic segmental duplication of three genes associated with annual precipitation. Next, we use the Atlantic salmon pan-genome to study the emergence of supergenes. Because supergenes can be maintained over millions of years by balancing selection and typically exhibit strong recombination suppression, their underlying functional variants and how they are formed are largely unknown. Inversions are type of rearrangement commonly associated with supergenes, and by directly comparing multiple highly continuous genome assemblies we were able to detect a number of large inversions in Atlantic salmon. A 3 Mb inversion, estimated to be ~15,000-year-old, and segregating in North American populations, displayed supergene signatures with adaptive variation captured within the standard arrangement of the inversion, as well as other adaptive variation accumulating after the inversion occurred. Characterization of other inversions with matched repeat structures at the breakpoints did not show any supergene signatures, suggesting that shared breakpoint repeats may obstruct the supergene formation. Lastly, we created long-read based genome assemblies for sympatric species pairs (Dwarf and Normal) belonging to lake whitefish (Coregonus clupeaformis). The species pairs offer a suitable model system for studying genomic patterns of differentiation and in particular the role of SVs in speciation. By combining long-reads, direct assembly, and short-read methods we detect 89,909 high-confidence SVs in the species pair across two lakes, covering five times more sequence in the genome compared to SNPs. In the study, we highlight shared outliers of differentiation between the lakes, indicating that they contribute to speciation. Interestingly, we find that more than 70% of SVs differentiating between the Normal and Dwarf species pairs of lake whitefish are overlapping transposable elements. This work demonstrates that SVs may play an important role for the differentiation and speciation of sympatric species pairs in lake whitefish.Strukturell variasjon (SVer), for eksempel delesjoner, insersjoner, inversjoner og duplikasjoner av sekvens, er en viktig kilde til genomisk variasjon som samplet sett påvirker flere basepar i genomet enn punktmutasjoner (SNPs). Til tross for en økende annerkjennelse for at SVer spiller en viktig rolle i genetisk tilpassing til ulikt miljø og artsdannelse har denne typen variasjon vært lite studert i mange arter. Ny DNA-sekvenseringsteknologi med lengre leselengder (long-read sequencing), samt utvikling av nye bioinformatiske verktøy, har ført til drastiske forbedringer i deteksjonen av SVer. ‘Long-read’ sekvensering gjør det også mulig å lage mer komplette og sammenhengende genomsekvenser enn tidligere. I denne avhandlingen benytter vi oss av ‘long-read’ data til å lage flere genomsekvenser av høy kvalitet for to ulike laksefiskarter: Atlanterhavslaks (Salmo salar) og en Nordamerikansk type sik ‘lake whitefish’ (Coregonus clupeaformis). Her rapporterer vi det første pan-genomet for Atlanterhavslaks. Det består av 11 assemblier basert på ‘long- read’ sekvensering av individer fra fire ulike fylogeografiske grupper av villaks. Assembliet av høyest kvalitet inkluderer 2,55 Gbp sekvens i kromosomer, 259 Mbp mer enn det forrige referansegenomet til Atlanterhavslaks. I tillegg ble andelen sammenhengende sekvens, målt som contig N50, økt fra 58 kbp til 28,06 Mbp (484 ganger høyere). Vi fant 1.061.452 SVer på tvers av de 11 individene med ~77,4 Mbp gjennomsnittlig sekvensforskjell per prøve. Atlanterhavslaksen har over tid tilpasset miljøet i ulike elver. For å studere underliggende genetisk variasjon for denne tilpasningen assosierte vi SVer med ulike miljøvariabler i et datasett bestående av 366 ‘short-read’ sekvenserte prøver ved bruk av en genom-graf. Ved hjelp av disse analysene fant vi flere SVer som bidrar til miljøtilpasning, blant annet en 18 kbp lang delesjon som inneholder tre gener assosiert med mengden nedbør i området. Vi brukte så pan-genomet for Atlanterhavsaks til å studere dannelsen av ‘supergener’. Supergener er en sammenkobling av genetisk variasjon i koblingsulikevekt som for eksempel kan oppstå ved hjelp av store inversjoner. Her utnyttet vi 11 genomassemblier til å identifisere og karakterisere en rekke store inversjoner i Atlanterhavslaks. En av inversjonene på 3 Mbp, estimert til å være ~15.000 år gammel, viste signaturer for utvikling som supergen. For de andre inversjonene som var flankert av repetert DNA fant vi ikke karakteristiske trekk på supergener, noe som tyder på at det repetitive DNA forhindrer en dannelse av supergener. Til slutt lagde vi genomsekvenser for ulike former (‘Normal’ og ‘Dwarf’) av ‘lake whitefish’ (Coregonus clupeaformis) som lever i de samme innsjøene i Nord-Amerika. Genomsekvensene muliggjør studier av genomiske mekanismene bak artsdannelse i denne laksefisken. Ved å kombinere ‘long-read’ data, direkte sammenlikning av assemblier, og ‘short-read’ data fant vi 89,909 SVer som skilte de to formene av ‘lake whitefish’ i to innsjøer. SVene omfatter mer enn fem ganger flere basepar i genomet sammenlignet med SNPs. I studiet fant vi flere SVer med avvikende forekomst (‘outliers’) i de to formene av ‘lake whitefish’, noe som indikerer at disse SVene bidrar til artsdannelse. Videre fant vi at 70 % av SVene overlappet en form av repetert DNA kalt transposable elementer. Dette arbeidet understreker at SVer kan spille en viktig rolle for artsdannelse i ’lake whitefish’
    corecore