2,450 research outputs found

    Addressing joint action challenges in HRI: Insights from psychology and philosophy

    Get PDF
    The vast expansion of research in human-robot interactions (HRI) these last decades has been accompanied by the design of increasingly skilled robots for engaging in joint actions with humans. However, these advances have encountered significant challenges to ensure fluent interactions and sustain human motivation through the different steps of joint action. After exploring current literature on joint action in HRI, leading to a more precise definition of these challenges, the present article proposes some perspectives borrowed from psychology and philosophy showing the key role of communication in human interactions. From mutual recognition between individuals to the expression of commitment and social expectations, we argue that communicative cues can facilitate coordination, prediction, and motivation in the context of joint action. The description of several notions thus suggests that some communicative capacities can be implemented in the context of joint action for HRI, leading to an integrated perspective of robotic communication.French National Research Agency (ANR) ANR-16-CE33-0017 ANR-17-EURE-0017 FrontCog ANR-10-IDEX-0001-02 PSLJuan de la Cierva-Incorporacion grant IJC2019-040199-ISpanish Government PID2019-108870GB-I00 PID2019-109764RB-I0

    Building TrusTee:The world's most trusted robot

    Get PDF
    This essay explores the requirements for building trustworthy robots and artificial intelligence by drawing from various scientific disciplines and taking human values as the starting-point. It also presents a research and impact agenda

    Social Intelligence Design 2007. Proceedings Sixth Workshop on Social Intelligence Design

    Get PDF

    Contextualized Robot Navigation

    Get PDF
    In order to improve the interaction between humans and robots, robots need to be able to move about in a way that is appropriate to the complex environments around them. One way to investigate how the robots should move is through the lens of theatre, which provides us with ways to analyze the robot\u27s movements and the motivations for moving in particular ways. In particular, this has proven useful for improving robot navigation. By altering the costmaps used for path planning, robots can navigate around their environment in ways that incorporate additional contexts. Experimental results with user studies have shown altered costmaps to have a significant effect on the interaction, although the costmaps must be carefully tuned to get the desired effect. The new layered costmap algorithm builds on the established open-source navigation platform, creating a robust system that can be extended to handle a wide range of contextual situations

    Foundations of Human-Aware Planning -- A Tale of Three Models

    Get PDF
    abstract: A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of human-awareness manifest themselves in the scope of planning or sequential decision making with humans in the loop. To this end, I will show (1) how the AI agent can leverage the human task model to generate symbiotic behavior; and (2) how the introduction of the human mental model in the deliberative process of the AI agent allows it to generate explanations for a plan or resort to explicable plans when explanations are not desired. The latter is in addition to traditional notions of human-aware planning which typically use the human task model alone and thus enables a new suite of capabilities of a human-aware AI agent. Finally, I will explore how the AI agent can leverage emerging mixed-reality interfaces to realize effective channels of communication with the human in the loop.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Sensing of complex buildings and reconstruction into photo-realistic 3D models

    Get PDF
    The 3D reconstruction of indoor and outdoor environments has received an interest only recently, as companies began to recognize that using reconstructed models is a way to generate revenue through location-based services and advertisements. A great amount of research has been done in the field of 3D reconstruction, and one of the latest and most promising applications is Kinect Fusion, which was developed by Microsoft Research. Its strong points are the real-time intuitive 3D reconstruction, interactive frame rate, the level of detail in the models, and the availability of the hardware and software for researchers and enthusiasts. A representative effort towards 3D reconstruction is the Point Cloud Library (PCL). PCL is a large scale, open project for 2D/3D image and point cloud processing. On December 2011, PCL made available an implementation of Kinect Fusion, namely KinFu. KinFu emulates the functionality provided in Kinect Fusion. However, both implementations have two major limitations: 1. The real-time reconstruction takes place only within a cube with a size of 3 meters per axis. The cube's position is fixed at the start of execution, and any object outside of this cube is not integrated into the reconstructed model. Therefore the volume that can be scanned is always limited by the size of the cube. It is possible to manually align many small-size cubes into a single large model, however this is a time-consuming and difficult task, especially when the meshes have complex topologies and high polygon count, as is the case with the meshes obtained from KinFu. 2. The output mesh does not have any color textures. There are some at-tempts to add color in the output point cloud; however, the resulting effect is not photo-realistic. Applying photo-realistic textures to a model can enhance the user experience, even when the model has a simple topology. The main goal of this project is to design and implement a system that captures large indoor environments and generates 3D photo-realistic large indoor models in real time. This report describes an extended version of the KinFu system. The extensions overcome the scalability and texture reconstruction limitations using commodity hardware and open-source software. The complete hardware setup used in this project is worth €2,000, which is comparable to the cost of a single professional laser scanner. The software is released under BSD license, which makes it completely free to use and commercialize. The system has been integrated into the open-source PCL project. The immediate benefits are three-fold: the system becomes a potential industry standard, it is maintained and extended by many developers around the world with no addition-al cost to the VCA group, and it can reduce the application development time by reusing numerous state-of-the-art algorithms
    • 

    corecore