2,857 research outputs found

    Multi-level Feature Fusion-based CNN for Local Climate Zone Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset

    Get PDF
    As a unique classification scheme for urban forms and functions, the local climate zone (LCZ) system provides essential general information for any studies related to urban environments, especially on a large scale. Remote sensing data-based classification approaches are the key to large-scale mapping and monitoring of LCZs. The potential of deep learning-based approaches is not yet fully explored, even though advanced convolutional neural networks (CNNs) continue to push the frontiers for various computer vision tasks. One reason is that published studies are based on different datasets, usually at a regional scale, which makes it impossible to fairly and consistently compare the potential of different CNNs for real-world scenarios. This study is based on the big So2Sat LCZ42 benchmark dataset dedicated to LCZ classification. Using this dataset, we studied a range of CNNs of varying sizes. In addition, we proposed a CNN to classify LCZs from Sentinel-2 images, Sen2LCZ-Net. Using this base network, we propose fusing multi-level features using the extended Sen2LCZ-Net-MF. With this proposed simple network architecture and the highly competitive benchmark dataset, we obtain results that are better than those obtained by the state-of-the-art CNNs, while requiring less computation with fewer layers and parameters. Large-scale LCZ classification examples of completely unseen areas are presented, demonstrating the potential of our proposed Sen2LCZ-Net-MF as well as the So2Sat LCZ42 dataset. We also intensively investigated the influence of network depth and width and the effectiveness of the design choices made for Sen2LCZ-Net-MF. Our work will provide important baselines for future CNN-based algorithm developments for both LCZ classification and other urban land cover land use classification

    Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Get PDF
    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission

    Urban street mapping using quickbird and Ikonos Images

    No full text
    International audienceThis article addresses the problem of urban street mapping from new high resolution satellite images. The proposed algorithm is divided in two sequential modules: a topologically correct graph of the street network is first extracted, and streets are then extracted as surface elements. The graph of the network is extracted by a following algorithm which minimizes a cost function. The surface extraction algorithm makes use of specific active contours (snakes) combined with a multiresolution analysis (MRA) for minimizing the problem of noise. This reconstruction phase is composed of two steps: the extraction of street segments and the extraction of street intersections. Results of the street network extraction are presented on Quickbird and Ikonos images. Future prospects are also expose

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    GPU Accelerated Registration of Hyperspectral Images Using KAZE Features

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final authenticated version is available online at: https://doi.org/10.1007/s11227-020-03214-0Image registration is a common task in remote sensing, consisting in aligning different images of the same scene. It is a computationally expensive process, especially if high precision is required, the resolution is high, or consist of a large number of bands, as is the case of the hyperspectral images. HSIKAZEisaregistration method specially adapted for hyperspectral images that is based on feature detection and takes profit of the spatial and the spectral information available in those images. In this paper, an implementation of the HSI–KAZE registration algorithm on GPUs using CUDA is proposed. It detects keypoints based on non–linear diffusion filtering and is suitable for on–board processing of high resolution hyperspectral images. The algorithm includes a band selection method based on the entropy, construction of a scale-space through of non-linear filtering, keypoint detection with position refinement, and keypoint descriptors with spatial and spectral parts. Several techniques have been applied to obtain optimum performance on the GPUThis work was supported in part by the Consellería de Educación, Universidade e Formación Profesional [Grant Nos. GRC2014/008, ED431C 2018/19 and ED431G/08] and Ministerio de Economía y Empresa, Government of Spain [grant number TIN2016-76373-P] and by Junta de Castilla y Leon - ERDF (PROPHET Project) [Grant No. VA082P17]. All are cofunded by the European Regional Development Fund (ERDF). The work of Álvaro Ordóñez was also supported by Ministerio de Ciencia, Innovación y Universidades, Government of Spain, under a FPU Grant [Grant Nos. FPU16/03537 and EST18/00602]S
    corecore