3,931 research outputs found

    A comparative analysis of transcription factor expression during metazoan embryonic development

    Get PDF
    During embryonic development, a complex organism is formed from a single starting cell. These processes of growth and differentiation are driven by large transcriptional changes, which are following the expression and activity of transcription factors (TFs). This study sought to compare TF expression during embryonic development in a diverse group of metazoan animals: representatives of vertebrates (Danio rerio, Xenopus tropicalis), a chordate (Ciona intestinalis) and invertebrate phyla such as insects (Drosophila melanogaster, Anopheles gambiae) and nematodes (Caenorhabditis elegans) were sampled, The different species showed overall very similar TF expression patterns, with TF expression increasing during the initial stages of development. C2H2 zinc finger TFs were over-represented and Homeobox TFs were under-represented in the early stages in all species. We further clustered TFs for each species based on their quantitative temporal expression profiles. This showed very similar TF expression trends in development in vertebrate and insect species. However, analysis of the expression of orthologous pairs between more closely related species showed that expression of most individual TFs is not conserved, following the general model of duplication and diversification. The degree of similarity between TF expression between Xenopus tropicalis and Danio rerio followed the hourglass model, with the greatest similarity occuring during the early tailbud stage in Xenopus tropicalis and the late segmentation stage in Danio rerio. However, for Drosophila melanogaster and Anopheles gambiae there were two periods of high TF transcriptome similarity, one during the Arthropod phylotypic stage at 8-10 hours into Drosophila development and the other later at 16-18 hours into Drosophila development.Comment: ~10 pages, 50 references, 6+3 figures and 5 table

    Some studies on protein structure alignment algorithms

    Get PDF
    The alignment of two protein structures is a fundamental problem in structural bioinformatics.Their structural similarity carries with it the connotation of similar functional behavior that couldbe exploited in various applications. A plethora of algorithms, including one by us, is a testamentto the importance of the problem. In this thesis, we propose a novel approach to measure theeectiveness of a sample of four such algorithms, DALI, TM-align, CE and EDAlignsse, for de-tecting structural similarities among proteins. The underlying premise is that structural proximityshould translate into spatial proximity. To verify this, we carried out extensive experiments withve dierent datasets, each consisting of proteins from two to six dierent families.In further addition to our work, we have focused on the area of computational methods foraligning multiple protein structures. This problem is known for its np-complete nature. Therefore,there are many ways to come up with a solution which can be better than the existing ones or atleast as good as them. Such a solution is presented here in this thesis. We have used a heuristicalgorithm which is the Progressive Multiple Alignment approach, to have the multiple sequencealignment. We used the root mean square deviation (RMSD) as a measure of alignment quality andreported this measure for a large and varied number of alignments. We also compared the executiontimes of our algorithm with the well-known algorithm MUSTANG for all the tested alignments

    Discovery and Analysis of Aligned Pattern Clusters from Protein Family Sequences

    Get PDF
    Protein sequences are essential for encoding molecular structures and functions. Consequently, biologists invest substantial resources and time discovering functional patterns in proteins. Using high-throughput technologies, biologists are generating an increasing amount of data. Thus, the major challenge in biosequencing today is the ability to conduct data analysis in an effi cient and productive manner. Conserved amino acids in proteins reveal important functional domains within protein families. Conversely, less conserved amino acid variations within these protein sequence patterns reveal areas of evolutionary and functional divergence. Exploring protein families using existing methods such as multiple sequence alignment is computationally expensive, thus pattern search is used. However, at present, combinatorial methods of pattern search generate a large set of solutions, and probabilistic methods require richer representations. They require biological ground truth of the input sequences, such as gene name or taxonomic species, as class labels based on traditional classi fication practice to train a model for predicting unknown sequences. However, these algorithms are inherently biased by mislabelling and may not be able to reveal class characteristics in a detailed and succinct manner. A novel pattern representation called an Aligned Pattern Cluster (AP Cluster) as developed in this dissertation is compact yet rich. It captures conservations and variations of amino acids and covers more sequences with lower entropy and greatly reduces the number of patterns. AP Clusters contain statistically signi cant patterns with variations; their importance has been confi rmed by the following biological evidences: 1) Most of the discovered AP Clusters correspond to binding segments while their aligned columns correspond to binding sites as verifi ed by pFam, PROSITE, and the three-dimensional structure. 2) By compacting strong correlated functional information together, AP Clusters are able to reveal class characteristics for taxonomical classes, gene classes and other functional classes, or incorrect class labelling. 3) Co-occurrence of AP Clusters on the same homologous protein sequences are spatially close in the protein's three-dimensional structure. These results demonstrate the power and usefulness of AP Clusters. They bring in similar statistically signifi cance patterns with variation together and align them to reveal protein regional functionality, class characteristics, binding and interacting sites for the study of protein-protein and protein-drug interactions, for diff erentiation of cancer tumour types, targeted gene therapy as well as for drug target discovery.1 yea

    Pan-genome Analysis, Visualization and Exploration

    Get PDF
    The dynamics of prokaryotic genomes are driven by the intricate interplay of different evolutionary forces such as gene duplication, gene loss and horizontal transfer. Even closely related strains can exhibit remarkable genetic diversity and substantial gene presence/absence variation. The pan-genome, namely the complete inventory of genes in a collection of strains, can be several times larger than the genome of any single strain. Although several tools for pan-genome analysis have been published, there is still much room for algorithmic improvement, as well as needs for applications that better interactively visualize and explore pan-genomes. Therefore, we have developed panX, an automated computational pipeline for efficient identification of orthologous gene clusters in the pan-genome. PanX identifies homologous relationships among genes using DIAMOND and MCL and then harnesses phylogeny-based post- processing to separate orthologs from paralogs. Furthermore, we take advantage of a divide-and-conquer strategy to achieve an approximately linear runtime on large datasets. The analysis result can be visualized by the accompanying software, an easy-to-use and powerful web-based visualization application for interactive exploration of the pan-genome. The visualization dashboard encompasses a variety of connected components that allow rapid searching, filtering and sorting of genes and flexible investigation of evolutionary relationships among strains and their genes. PanX seamlessly interlinks gene clusters with their alignments and gene phylogenies, maps mutations on the branches of gene tree and highlights gene gain and loss events on the core-genome phylogeny that can also be colored by metadata associated with strains. By using 120 simulated pan-genome datasets for benchmarking and comparing clustering results on real dataset between different tools, panX exhibits overall good performance across a large range of diversities. PanX is available at pangenome.de, with a wide range of microbial pan-genomes established. Besides, user-provided pan-genomes can be visualized either via a web server or by running panX locally as a web-based application

    Discovering Protein Functional Regions and Protein-Protein Interaction using Co-occurring Aligned Pattern Clusters

    Get PDF
    Bioinformatics is a rapidly expanding field of research due to multiple recent advancements: 1) the advent of machine intelligence, 2) the increase of computing power, 3) our better understanding of the underlying biomolecular mechanisms, and 4) the drastic reduction of biosequencing cost and time. Since wet laboratory approaches to analysing the protein sequencing is still labour intensive and time consuming, more cost-effective computational approaches for analyzing protein sequences and their biochemical interactions are crucial. This is especially true when we encounter a large collection of protein sequences. Aligned Pattern CLustering (APCL), an algorithm which combines machine intelligence methodologies such as pattern recognition, pattern discovery, pattern clustering and alignment, formulated by my research group and myself, is one such technique. APCL discovers, prunes, and clusters aligned statistically significant patterns to assemble a related, or specifically, a homologous group of patterns in the form of an Aligned Pattern Cluster (APC). The APC obtained is found to correspond to statistically and functionally significant association patterns, which corresponds as conserved regions, such as binding segments within and between protein sequences as well as between Protein Transcription Factor (TF) and DNA Transcription Factor Binding Sites (TFBS) in many of our empirical experiments. While several known algorithms also exist to find functionally conserved segments in biosequences, they are less flexible and require more parameters than what APCL requires. Hence, APCL is a powerful tool to analyze biosequences. Because of its effectiveness, the usefulness of APCL is further expanded from the assist of discovering and analyzing functional regions of protein sequences to the exploration of co-occurrence of patterns on the same sequences or on interacting patterns between sequences from the discovered APCs. Two new algorithms are introduced and reported in this thesis in the exploration of 1) APCs containing patterns residing within the same biosequences and 2) APCs containing patterns residing between interacting biosequences. The first algorithm attempts to cluster APCs from APCs that share patterns on the same biosequences. It uses a co-occurrence score between APCs in a co-occurrence APC pair (two APCs containing co-occurrence patterns) to account for the proportion of biosequences of co-occurrence patterns they share against the total number of sequences containing them. Using this score as a similarity measure (or more precisely, as a co-occurring measure), we devise a Co-occurrence APC Clustering Algorithm to cluster APCs obtained from a collection of related biosequences into a Co-Occurrence Cluster of APCs abbreviated by cAPC. It is then analyzed and verified to see whether or not there are essential biological functions associating with the APCs within that cluster. Cytochrome c and ubiquitin families were analyzed in depth, and it was validated that members in the same cAPC do cover the functional regions that have essential cooperative biological functions. The second algorithm takes advantage of the effectiveness of APCL to create a protein-protein interaction (PPI) identification and prediction algorithm. PPI prediction is a hot research problem in bioinformatics and proteomic. A good number of algorithms exist. The state of the art algorithm is one which could achieve high success rate in prediction performance, but provides results that are difficult to interpret. The research in this thesis tries to overcome this hurdle. This second algorithm uses an APC-PPI score between two APCs to account for the proportion of patterns residing on two different protein sequences. This score measures how often patterns in both APCs co-occur in the sequence data of two known interacting proteins. The scores are then used to construct feature vectors to first train a learning model from the known PPI data and later used to predict the possible PPI between a protein pair. The algorithm performance was comparable to the state of the art algorithms, but provided results that are interpretable. The results from both algorithms built upon the extension of APCL in finding co-occurring patterns via co-occurrence of APCs are proved to be effective and useful since its performance in finding APCs is fast and effective. The first algorithm discovered biological insights, supported by biological literature, which are typically unable to be discovered solely through the analysis of biosequences. The second algorithm succeeded in providing accurate and descriptive PPI predictions. Hence, these two algorithms are useful in the analysis and prediction of proteins. In addition, through continued research and development to the second algorithm, it will be a powerful tool for the drug industry, as it can help find new PPI, an important step in developing new drugs for different drug targets
    • …
    corecore