394 research outputs found

    An overview of LCS research from 2021 to 2022

    Get PDF

    On optimal design and applications of linear transforms

    Get PDF
    Linear transforms are encountered in many fields of applied science and engineering. In the past, conventional block transforms provided acceptable answers to different practical problems. But now, under increasing competitive pressures, with the growing reservoir of theory and a corresponding development of computing facilities, a real demand has been created for methods that systematically improve performance. As a result the past two decades have seen the explosive growth of a class of linear transform theory known as multiresolution signal decomposition. The goal of this work is to design and apply these advanced signal processing techniques to several different problems. The optimal design of subband filter banks is considered first. Several design examples are presented for M-band filter banks. Conventional design approaches are found to present problems when the number of constraints increases. A novel optimization method is proposed using a step-by-step design of a hierarchical subband tree. This method is shown to possess performance improvements in applications such as subband image coding. The subband tree structuring is then discussed and generalized algorithms are presented. Next, the attention is focused on the interference excision problem in direct sequence spread spectrum (DSSS) communications. The analytical and experimental performance of the DSSS receiver employing excision are presented. Different excision techniques are evaluated and ranked along with the proposed adaptive subband transform-based excises. The robustness of the considered methods is investigated for either time-localized or frequency-localized interferers. A domain switchable excision algorithm is also presented. Finally, sonic of the ideas associated with the interference excision problem are utilized in the spectral shaping of a particular biological signal, namely heart rate variability. The improvements for the spectral shaping process are shown for time-frequency analysis. In general, this dissertation demonstrates the proliferation of new tools for digital signal processing

    Application of multirate digital signal processing to image compression

    Full text link
    With the increasing emphasis on digital communication and digital processing of images and video, image compression is drawing considerable interest as a means of reducing computer storage and communication channels bandwidth requirements. This thesis presents a method for the compression of grayscale images which is based on the multirate digital signal processing system. The input image spectrum is decomposed into octave wide subbands by critically resampling and filtering the image using separable FIR digital filters. These filters are chosen to satisfy the perfect reconstruction requirement. Simulation results on rectangularly sampled images (including a text image) are presented. Then, the algorithm is applied to the hexagonally resampled images and the results show a slight increase in the compression efficiency. Comparing the results against the standard (JPEG), indicate that this method does not have the blocking effect of JPEG and it preserves the edges even in the presence of high noise level

    A generalized, parametric PR-QMF/wavelet transform design approach for multiresolution signal decomposition

    Get PDF
    This dissertation aims to emphasize the interrelations and the linkages of the theories of discrete-time filter banks and wavelet transforms. It is shown that the Binomial-QMF banks are identical to the interscale coefficients or filters of the compactly supported orthonormal wavelet transform bases proposed by Daubechies. A generalized, parametric, smooth 2-band PR-QMF design approach based on Bernstein polynomial approximation is developed. It is found that the most regular compact support orthonormal wavelet filters, coiflet filters are only the special cases of the proposed filter bank design technique. A new objective performance measure called Non-aliasing Energy Ratio(NER) is developed. Its merits are proven with the comparative performance studies of the well known orthonormal signal decomposition techniques. This dissertation also addresses the optimal 2-band PR-QMF design problem. The variables of practical significance in image processing and coding are included in the optimization problem. The upper performance bounds of 2-band PR-QMF and their corresponding filter coefficients are derived. It is objectively shown that there are superior filter bank solutions available over the standard block transform, DCT. It is expected that the theoretical contributions of this dissertation will find its applications particularly in Visual Signal Processing and Coding

    Software Pipelining for Quantum Loop Programs.

    Full text link
    We propose a method for performing software pipelining on quantum for-loop programs, exploiting parallelism in and across iterations. We redefine concepts that are useful in program optimization, including array aliasing, instruction dependency and resource conflict, this time in optimization of quantum programs. Using the redefined concepts, we present a software pipelining algorithm exploiting instruction-level parallelism in quantum loop programs. The optimization method is then evaluated on some test cases, including popular applications like QAOA, and compared with several baseline results. The evaluation results show that our approach outperforms loop optimizers exploiting only in-loop optimization chances by reducing total depth of the loop program to close to the optimal program depth obtained by full loop unrolling, while generating much smaller code in size. This is the first step towards optimization of a quantum program with such loop control flow as far as we know

    Learning-based Wavelet-like Transforms For Fully Scalable and Accessible Image Compression

    Full text link
    The goal of this thesis is to improve the existing wavelet transform with the aid of machine learning techniques, so as to enhance coding efficiency of wavelet-based image compression frameworks, such as JPEG 2000. In this thesis, we first propose to augment the conventional base wavelet transform with two additional learned lifting steps -- a high-to-low step followed by a low-to-high step. The high-to-low step suppresses aliasing in the low-pass band by using the detail bands at the same resolution, while the low-to-high step aims to further remove redundancy from detail bands by using the corresponding low-pass band. These two additional steps reduce redundancy (notably aliasing information) amongst the wavelet subbands, and also improve the visual quality of reconstructed images at reduced resolutions. To train these two networks in an end-to-end fashion, we develop a backward annealing approach to overcome the non-differentiability of the quantization and cost functions during back-propagation. Importantly, the two additional networks share a common architecture, named a proposal-opacity topology, which is inspired and guided by a specific theoretical argument related to geometric flow. This particular network topology is compact and with limited non-linearities, allowing a fully scalable system; one pair of trained network parameters are applied for all levels of decomposition and for all bit-rates of interest. By employing the additional lifting networks within the JPEG2000 image coding standard, we can achieve up to 17.4% average BD bit-rate saving over a wide range of bit-rates, while retaining the quality and resolution scalability features of JPEG2000. Built upon the success of the high-to-low and low-to-high steps, we then study more broadly the extension of neural networks to all lifting steps that correspond to the base wavelet transform. The purpose of this comprehensive study is to understand what is the most effective way to develop learned wavelet-like transforms for highly scalable and accessible image compression. Specifically, we examine the impact of the number of learned lifting steps, the number of layers and the number of channels in each learned lifting network, and kernel support in each layer. To facilitate the study, we develop a generic training methodology that is simultaneously appropriate to all lifting structures considered. Experimental results ultimately suggest that to improve the existing wavelet transform, it is more profitable to augment a larger wavelet transform with more diverse high-to-low and low-to-high steps, rather than developing deep fully learned lifting structures

    Design and performance of CDMA codes for multiuser communications

    Get PDF
    Walsh and Gold sequences are fixed power codes and are widely used in multiuser CDMA communications. Their popularity is due to the ease of implementation. Availability of these code sets is limited because of their generating kernels. Emerging radio applications like sensor networks or multiple service types in mobile and peer-to-peer communications networks might benefit from flexibilities in code lengths and possible allocation methodologies provided by large set of code libraries. Walsh codes are linear phase and zero mean with unique number of zero crossings for each sequence within the set. DC sequence is part of the Walsh code set. Although these features are quite beneficial for source coding applications, they are not essential for spread spectrum communications. By relaxing these unnecessary constraints, new sets of orthogonal binary user codes (Walsh-like) for different lengths are obtained with comparable BER performance to standard code sets in all channel conditions. Although fixed power codes are easier to implement, mathematically speaking, varying power codes offer lower inter- and intra-code correlations. With recent advances in RF power amplifier design, it might be possible to implement multiple level orthogonal spread spectrum codes for an efficient direct sequence CDMA system. A number of multiple level integer codes have been generated by brute force search method for different lengths to highlight possible BER performance improvement over binary codes. An analytical design method has been developed for multiple level (variable power) spread spectrum codes using Karhunen-Loeve Transform (KLT) technique. Eigen decomposition technique is used to generate spread spectrum basis functions that are jointly spread in time and frequency domains for a given covariance matrix or power spectral density function. Since this is a closed form solution for orthogonal code set design, many options are possible for different code lengths. Design examples and performance simulations showed that spread spectrum KLT codes outperform or closely match with the standard codes employed in present CDMA systems. Hybrid (Kronecker) codes are generated by taking Kronecker product of two spreading code families in a two-stage orthogonal transmultiplexer structure and are judiciously allocated to users such that their inter-code correlations are minimized. It is shown that, BER performance of hybrid codes with a code selection and allocation algorithm is better than the performance of standard Walsh or Gold code sets for asynchronous CDMA communications. A redundant spreading code technique is proposed utilizing multiple stage orthogonal transmultiplexer structure where each user has its own pre-multiplexer. Each data bit is redundantly spread in the pre-multiplexer stage of a user with odd number of redundancy, and at the receiver, majority logic decision is employed on the detected redundant bits to obtain overall performance improvement. Simulation results showed that redundant spreading method improves BER performance significantly at low SNR channel conditions

    A self-calibrating system for finger tracking using sound waves

    Get PDF
    In this thesis a system for tracking the fingers of a user using sound waves is developed. The proposed solution is to attach a small speaker to each finger and then have a number of microphones placed ad hoc around a computer monitor listening to the speakers. The system should then be able to track the positions of the fingers so that the coordinates can be mapped to the computer monitor and be used for human-computer interfacing. The thesis focuses on the proof-of-concept of the system. The system pipeline consists of three parts: signal processing, system self-calibration and real-time sound source tracking. In the signal processing step four different signal methods are constructed and evaluated. It is shown that multiple signals can be used in parallel. The signal method with the best performance uses a number of dampened sine waves stacked on top of each other, with each sound wave having a different frequency within a specified frequency band. The goal was to use ultrasound frequency bands for the system but experimenting showed that they gave rise to a lot of aliasing, thus rendering the higher frequency bands unusable. The second step, the system self-calibration, aims to do a scene reconstruction to find the positions of the microphones and the sound source path using only the received signal transmissions. First the time-difference of arrival (TDOA) values are estimated using robust techniques centred around a GCC-PHAT. The time offsets are then estimated in order to convert the TDOA problem into a time-of-arrival (TOA) problem so that the positions of the receivers and sound events can be calculated. Finally a "virtual screen" is fitted to the sound source path to be used for coordinate projection. The scene reconstruction was successful in 80 % of the test cases, in the sense that it managed to estimate the spatial positions at all. The estimates for the microphones had errors of 11.8 +/- 5 centimetres on average for the successful test cases, which is worse than the results presented in previous research. However, the best test case outperformed the results of another paper. The newly developed and implemented technique for finding the virtual screen was far from robust and only found a reasonable virtual screen in 12.5 % of the test cases. In the third step the sound events were estimated, one sound event at a time, using the SRP-PHAT method with the CFRC improvement. Unfortunate choices of the search volumes made the calculations very computationally heavy. The results were comparable to those of the system self-calibration when using the same data and the estimated microphone positions

    Multistation Methods for Geotechnical Characterization using Surface Waves

    Get PDF
    This dissertation deals with soil characterization methods based on surface wave propagation applied to geotechnical engineering purposes. This topic has gained much interest in the last decade because of the appealing possibilities given by non-invasive methods, which are at once very flexible and cost effective. An overview of the properties of Rayleigh waves in layered linear elastic and linear viscoelastic media is presented, together with their applications for site characterization, of whose the SASW (Spectral Analysis of Surface Waves) method is by far the most well-known in geotechnical engineering. The research has been mainly focused on the application of multistation methods, compared with the classical two-station approach typical of the SASW method. Results from both numerical simulations and experimental testing are reported to compare two-station and multistation methods and to clarify the advantages that can be obtained using the latter ones. In particular the research has been developed following two different directions: on the one hand the application of classical geophysical analysis tools (such as domain analysis and slant stack transform) to tests performed with impulsive sources. On the other one the possibility of obtaining from surface wave testing not only a stiffness profile, but also a damping ratio profile for the site. In this respect a new method for simultaneous measurements of Rayleigh dispersion and attenuation curves is proposed. Regarding the first topic, the necessity of a multistation approach to determine the experimental dispersion test is essentially related to the spatial variation of phase velocity. Analyses in the frequency-wavenumber domain and in the frequency-slowness domain are very powerful approaches, still there was a need of studying the effects of the change of scale from geophysical applications to geotechnical ones. Indeed because of the peculiar properties of Rayleigh waves, surface testing is strongly affected by the distance travelled by the analysed wave. The numerical simulations performed in the research show that the phase velocity obtained using multistation methods with a limited number of receivers close to the source is not a modal value as it is for geophysical applications, but an apparent phase velocity arising from modal superposition. The experimental tests showed the good performances of multistation methods when compared to the SASW method. In particular some drawbacks of the latter method, due essentially to its two-station nature, are avoided and the field-testing appears to be very promising for future applications. In particular the application of the frequency-wavenumber domain analysis can lead to much faster and more stable estimates of the experimental dispersion curve and the process is easily automated, with a great saving of time and less requirement for subjective decisions. Another important advantage is given by the stability with respect to a near field effects that lead to a better reconstruction of the dispersion curve for the low frequencies and hence to a deeper characterization. The necessity of a new method for the simultaneous determination of surface wave dispersion and attenuation curves is linked to the strong coupling existing between the two. Such coupling is extremely important for the subsequent inversion process, in a consistent method leading from the field measurements to the stiffness and damping profiles. The proposed method uses a new testing configuration, designed to measure the experimental transfer function. Successively a regression process of the complex quantity with the corresponding expression obtained modelling soil as a linear viscoelastic layered system leads to the experimental dispersion and attenuation curves. Some preliminary results are reported showing very encouraging results, also if a more extensively testing programme is required for the complete validation of the metho
    • …
    corecore